Frames associated with an operator in spaces with an indefinite metric

被引:3
作者
Villar, Osmin Ferrer [1 ]
Acosta, Jesns Dominguez [1 ,2 ]
Ortiz, Edilberto Arroyo [1 ]
机构
[1] Univ Sucre, Dept Math, Cra 28 5-267, Sincelejo, Sucre, Colombia
[2] Corp Univ Caribe CECAR, Cra Troncal Occidente Km 1,Via Corozal, Sincelejo, Sucre, Colombia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
indefinite metric; Krein space; frames; (W-frames;
D O I
10.3934/math.2023802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study frames associated with an operator ((W-frames) in Krein spaces, and we give the definition of frames associated with an operator depending on the adjoint of the operator in the Krein space (Definition 4.1). We prove that the definition given in [A. Mohammed, K. Samir, N. Bounader, K-frames for Krein spaces, Ann. Funct. Anal., 14 (2023), 10.], which depends on the adjoint of the operator in the associated Hilbert space, is a consequence of our definition. We prove that our definition is independent of the fundamental decomposition (Theorem 4.1) and that having (W-frames for the Krein space necessarily gives (W-frames for the Hilbert spaces that compose the Krein space (Theorem 4.4). We also prove that orthogonal projectors generate new operators with their respective frames (Theorem 4.2). We prove an equivalence theorem for (W-frames (Theorem 4.3), without depending on the fundamental symmetry as usually given in Hilbert spaces.
引用
收藏
页码:15712 / 15722
页数:11
相关论文
共 11 条
[1]  
Azizov T.Ya., 1989, LINEAR OPERATORS SPA
[2]  
Bognar Bog74J., 1974, Ergebnisse der Mathematik und ihrer Grenzgebiete, V78
[3]  
Christensen O., 2016, INTRO FRAMES RIESZ B, DOI 10.1007/978-0-8176-8224-8
[4]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[5]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[7]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[8]  
Esmeral K, 2015, BANACH J MATH ANAL, V9, P1
[9]   Frames for operators [J].
Gavruta, Laura .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (01) :139-144
[10]  
Grchenig K., 2001, FDN TIME FREQUENCY A