Technical note: Simulation of lung counting applications using Geant4

被引:1
|
作者
Jutila, Henri [1 ,2 ]
Greenlees, Paul [1 ,2 ]
Torvela, Tiina [3 ]
Muikku, Maarit [3 ]
机构
[1] Univ Jyvaskyla, Dept Phys, Accelerator Lab, FI-40014 Jyvaskyla, Finland
[2] Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland
[3] STUK Radiat & Nucl Safety Author, Jokiniemenkuja 1, Vantaa 01370, Finland
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2023年 / 108卷
关键词
Lung counting; Voxel phantom; Geant4; simulation; Low-energy gamma-ray spectra;
D O I
10.1016/j.ejmp.2023.102573
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A Geant4 simulation package has been developed to investigate and test detector configurations for lung counting applications. The objective of this study was to measure radiation emitted from the human body and to make a qualitative comparison of the results of the simulation with an experiment. Experimental data were measured from a plastic phantom with a set of lungs containing 241Am activity. For comparison, simulations in which 241Am activity was uniformly distributed inside the lungs of the ICRP adult reference computational phantom were made. The attenuation of photons by the chest wall was simulated and from this photopeak ef-ficiency and photon transmission were calculated as a function of photon energy. The transmission of 59.5 keV gamma rays, characteristic of the decay of 241Am, was determined from the computational phantom as a function of the angular position of the detector. It was found that the simulated detector response corresponds well with that from an experiment. The simulated count rate below 100 keV was 10.0(7) % greater compared to the experimental measurement. It was observed that 58.3(4) % of photons are attenuated for energies below 100 keV by the chest wall. In the simulation, the transmission of 59.5 keV gamma rays varied from 13.8(2) % to 38.0(4) % as a function of the angular position of the detector. The results obtained from the simulations show a satisfactory agreement with experimental data and the package can be used in the development of future body counting applications and enables optimization of the detection geometry.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration
    Apostolakis, John
    MOLECULAR IMAGING: COMPUTER RECONSTRUCTION AND PRACTICE, 2008, : 73 - 92
  • [2] Geant4 developments and applications
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Dubois, PA
    Asai, M
    Barrand, G
    Capra, R
    Chauvie, S
    Chytracek, R
    Cirrone, GAP
    Cooperman, G
    Cosmo, G
    Cuttone, G
    Daquino, GG
    Donszelmann, M
    Dressel, M
    Folger, G
    Foppiano, F
    Generowicz, J
    Grichine, V
    Guatelli, S
    Gumplinger, P
    Heikkinen, A
    Hrivnacova, I
    Howard, A
    Incerti, S
    Ivanchenko, V
    Johnson, T
    Jones, F
    Koi, T
    Kokoulin, R
    Kossov, M
    Kurashige, H
    Lara, V
    Larsson, S
    Lei, F
    Link, O
    Longo, F
    Maire, M
    Mantero, A
    Mascialino, B
    McLaren, I
    Lorenzo, PM
    Minamimoto, K
    Murakami, K
    Nieminen, P
    Pandola, L
    Parlati, S
    Peralta, L
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) : 270 - 278
  • [3] The CLAS12 Geant4 simulation
    Ungaro, M.
    Angelini, G.
    Battaglieri, M.
    Burkert, V. D.
    Carman, D. S.
    Chatagnon, P.
    Contalbrigo, M.
    Defurne, M.
    De Vita, R.
    Duran, B.
    Fair, R.
    Garcon, M.
    Ghoshal, P.
    Rajput-Ghoshal, R.
    Gotra, Y.
    Joosten, S.
    Kim, A.
    Lersch, D.
    Markov, N.
    Mestayer, M. D.
    Miller, R.
    Mirazita, M.
    Newton, J.
    Niccolai, S.
    Phelps, W.
    Procureur, S.
    Prok, Y.
    Puckett, A.
    Sokhan, D.
    Stepanyan, S.
    Vlassov, A.
    Wang, R.
    Wiggins, C.
    Ziegler, V
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 959
  • [4] Latest Geant4 developments for PIXE applications
    Bakr, S.
    Cohen, D. D.
    Siegele, R.
    Incerti, S.
    Ivanchenko, V.
    Mantero, A.
    Rosenfeld, A.
    Guatelli, S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2018, 436 : 285 - 291
  • [5] Investigation of Geant4 Simulation of Electron Backscattering
    Basaglia, Tullio
    Han, Min Cheol
    Hoff, Gabriela
    Kim, Chan Hyeong
    Kim, Sung Hun
    Pia, Maria Grazia
    Saracco, Paolo
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (04) : 1805 - 1812
  • [6] New Geant4 Developments for Doppler Broadening Simulation in Compton Scattering - Development of Charge Transfer Simulation Models in Geant4
    Longo, Francesco
    Pandola, Luciano
    Pia, Maria Grazia
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 2140 - +
  • [7] Geant4 toolkit for simulation of HEP experiments
    Ivanchenko, VN
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 502 (2-3) : 666 - 668
  • [8] Modification of source contribution in PALS by simulation using Geant4 code
    Ning, Xia
    Cao, Xingzhong
    Li, Chong
    Li, Demin
    Zhang, Peng
    Gong, Yihao
    Xia, Rui
    Wang, Baoyi
    Wei, Long
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 397 : 75 - 81
  • [9] Simulation of ion propagation in the microbeam line of CENBG using GEANT4
    Incerti, S
    Barberet, P
    Courtois, B
    Michelet-Habchi, C
    Moretto, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 210 : 92 - 97
  • [10] LHAASO-KM2A detector simulation using Geant4
    Cao, Zhen
    Aharonian, F.
    An, Q.
    Axikegu
    Bai, Y. X.
    Bao, Y. W.
    Bastieri, D.
    Bi, X. J.
    Bi, Y. J.
    Cai, J. T.
    Cao, Q.
    Cao, W. Y.
    Cao, Zhe
    Chang, J.
    Chang, J. F.
    Chen, A. M.
    Chen, E. S.
    Chen, Liang
    Chen, Lin
    Chen, Long
    Chen, M. J.
    Chen, M. L.
    Chen, Q. H.
    Chen, S. H.
    Chen, S. Z.
    Chen, T. L.
    Chen, Y.
    Cheng, N.
    Cheng, Y. D.
    Cui, M. Y.
    Cui, S. W.
    Cui, X. H.
    Cui, Y. D.
    Dai, B. Z.
    Dai, H. L.
    Dai, Z. G.
    Dong, X. Q.
    Duan, K. K.
    Fan, J. H.
    Fan, Y. Z.
    Fang, J.
    Fang, K.
    Feng, C. F.
    Feng, L.
    Feng, S. H.
    Feng, X. T.
    Feng, Y. L.
    Gabici, S.
    Gao, B.
    Gao, C. D.
    RADIATION DETECTION TECHNOLOGY AND METHODS, 2024, 8 (03) : 1437 - 1447