Densification and microstructure features of lithium hydride fabrication

被引:4
作者
Bustillos, Christian G. [1 ]
King, Gabriella [1 ]
Yang, Qirong [1 ]
Baumer, Teresa [1 ]
Sio, Corliss Kin I. [1 ,2 ]
Bora, Mihail [1 ]
Root, Jaben R. [1 ]
Kuntz, Joshua D. [1 ]
Frane, Wyatt L. Du [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Toronto, Dept Earth Sci, Toronto, ON M5S 3B1, Canada
关键词
Lithium Hydride; Sintering; Densification; Ceramic; COLD DIE COMPACTION; MECHANICAL-PROPERTIES; POWDER COMPACTION; HYDROGEN STORAGE; WALL FRICTION; HYDROLYSIS; NUCLEAR; KINETICS; STRESS; LIH;
D O I
10.1016/j.anucene.2023.109709
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The manufacturing of lithium hydride (LiH) utilizing uniaxial pressing, which offers fabrication with tailorable properties via microstructure control, can lead to the expansion in application of LiH while bypassing the challenges presented by historical casting manufacturing techniques. Through control of consolidation conditions such as pressure, temperature, dwell time and powder load, the presented work highlights the densification of LiH, with an emphasis on quantifying oxygen content, for applications requiring a specific density range necessary for optimized material performance. Karl Fischer Titration and X-ray Diffraction proved useful in determining oxygen and phase content while Computed Tomography and Scanning Electron Microscopy provided structural analysis. The temperature dependent densification of LiH fit with an Arrhenius term resulted in an activation energy of 21.2 kJ/mol. Images of fractured surfaces of LiH pressed at 500 degrees C revealed drastic grain coarsening, aided by the presence of oxygen impurities.
引用
收藏
页数:13
相关论文
共 98 条
[1]   Analyses of the fundamental parameters of cold die compaction of powder metallurgy [J].
Al-Qureshi, H. A. ;
Soares, M. R. F. ;
Hotza, D. ;
Alves, M. C. ;
Klein, A. N. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 199 (1-3) :417-424
[2]   On the mechanics of cold die compaction for powder metallurgy [J].
Al-Qureshi, HA ;
Galiotto, A ;
Klein, AN .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 166 (01) :135-143
[3]   Die wall lubrication for UO2 pellets pressing: A case study [J].
Alzouma, Ousseini Marou ;
Robisson, Anne-Charlotte .
CERAMICS INTERNATIONAL, 2018, 44 (13) :15905-15911
[4]  
[Anonymous], 1996, Sintering theory and practice, Wiley
[5]   Sintering and microstructure of ice: a review [J].
Blackford, Jane R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (21) :R355-R385
[6]   Hexaborides: a review of structure, synthesis and processing [J].
Cahill, James T. ;
Graeve, Olivia A. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2019, 8 (06) :6321-6335
[7]   SOLAR-ENERGY RECEIVER WITH LITHIUM-HYDRIDE HEAT STORAGE [J].
CALDWELL, RT ;
MCDONALD, JW ;
PIETSCH, A .
SOLAR ENERGY, 1965, 9 (01) :48-&
[8]   An electrochemical study of hydrogen in molten 2LiF-BeF2 (FLiBe) with addition of LiH [J].
Carotti, Francesco ;
Liu, Ertai ;
Macdonald, Digby D. ;
Scarlat, Raluca O. .
ELECTROCHIMICA ACTA, 2021, 367
[9]  
Castro R.H. R., 2012, ENG MAT, P1, DOI [DOI 10.1007/978-3-642-31009-6_1, 10.1007/978-3-642-31009-6_1]
[10]   Sintering and densification of nanocrystalline ceramic oxide powders: a review 2 [J].
Chaim, R. ;
Levin, M. ;
Shlayer, A. ;
Estournes, C. .
ADVANCES IN APPLIED CERAMICS, 2008, 107 (03) :159-169