Recursive identification of a nonlinear state space model

被引:0
|
作者
Wigren, Torbjoern [1 ,2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Uppsala Univ, Dept Informat Technol, Div Syst andControl, SE-75105 Uppsala, Sweden
关键词
averaging; convergence; nonlinear systems; prediction error method; state-space model; PREDICTION ERROR IDENTIFICATION; SYSTEM-IDENTIFICATION; CONVERGENCE;
D O I
10.1002/acs.3531
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The convergence of a recursive prediction error method is analyzed. The algorithm identifies a nonlinear continuous time state space model, parameterized by one right-hand side component of the differential equation and an output equation with a fixed differential gain, to avoid over-parametrization. The method minimizes the criterion by simulation using an Euler discretization. A stability analysis of the associated differential equations results in conditions for (local) convergence to a minimum of the criterion function. Simulations verify the theoretical analysis and illustrate the performance in the presence of unmodeled dynamics, by identification of the nonlinear drum boiler dynamics of a power plant model.
引用
收藏
页码:447 / 473
页数:27
相关论文
共 50 条
  • [41] Recursive identification of multiple-input single-output fractional-order Hammerstein model with time delay
    Moghaddam, Mohammad Jahani
    Mojallali, Hamed
    Teshnehlab, Mohammad
    APPLIED SOFT COMPUTING, 2018, 70 : 486 - 500
  • [42] State space model predictive control based on nuclear norm system identification
    Ge, Lianming
    Ding, Jie
    Deng, Hui
    2018 9TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING (PAAP 2018), 2018, : 1 - 5
  • [43] Identification of Nonlinear State-Space Models Using Joint State Particle Smoothing
    Geng Li-Hui
    Brett, Ninness
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2166 - 2170
  • [44] Extended state space recursive least squares
    Irshad, Azeem
    Salman, Muhammad
    Bashir, Sajid
    Malik, Muhammad Bilal
    DIGITAL SIGNAL PROCESSING, 2016, 49 : 95 - 103
  • [45] FAST RECURSIVE-IDENTIFICATION OF STATE-SPACE MODELS VIA EXPLOITATION OF DISPLACEMENT STRUCTURE
    CHO, YM
    XU, GG
    KAILATH, T
    AUTOMATICA, 1994, 30 (01) : 45 - 59
  • [46] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428
  • [47] Exploiting Chaos in Learning System Identification for Nonlinear State Space Models
    Olmez, Mehmet
    Guzelis, Cuneyt
    NEURAL PROCESSING LETTERS, 2015, 41 (01) : 29 - 41
  • [48] Nonparametric Analysis and Nonlinear State-Space Identification: A Benchmark Example
    Van Mulders, A.
    Schoukens, J.
    Vanbeylen, L.
    NONLINEAR DYNAMICS, VOL 2, 2014, : 203 - 214
  • [49] RECURSIVE IDENTIFICATION FOR DYNAMIC SYSTEMS WITH BACKLASH
    Dong, Ruili
    Tan, Yonghong
    Chen, Hui
    ASIAN JOURNAL OF CONTROL, 2010, 12 (01) : 26 - 38
  • [50] Recursive Identification of Nonlinear Hammerstein Systems With FIR Linear Parts Under Impulsive Noise With Model Selection and Order Determination
    Lin, Jianqiang
    Chan, Shing-Chow
    IEEE ACCESS, 2024, 12 : 138702 - 138715