Recursive identification of a nonlinear state space model

被引:0
|
作者
Wigren, Torbjoern [1 ,2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Uppsala Univ, Dept Informat Technol, Div Syst andControl, SE-75105 Uppsala, Sweden
关键词
averaging; convergence; nonlinear systems; prediction error method; state-space model; PREDICTION ERROR IDENTIFICATION; SYSTEM-IDENTIFICATION; CONVERGENCE;
D O I
10.1002/acs.3531
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The convergence of a recursive prediction error method is analyzed. The algorithm identifies a nonlinear continuous time state space model, parameterized by one right-hand side component of the differential equation and an output equation with a fixed differential gain, to avoid over-parametrization. The method minimizes the criterion by simulation using an Euler discretization. A stability analysis of the associated differential equations results in conditions for (local) convergence to a minimum of the criterion function. Simulations verify the theoretical analysis and illustrate the performance in the presence of unmodeled dynamics, by identification of the nonlinear drum boiler dynamics of a power plant model.
引用
收藏
页码:447 / 473
页数:27
相关论文
共 50 条
  • [31] Recursive Nonparametric Identification of Nonlinear Systems With Adaptive Binary Sensors
    Zhao, Wenxiao
    Chen, Han-Fu
    Tempo, Roberto
    Dabbene, Fabrizio
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3959 - 3971
  • [32] Speaker identification based on state space model
    Xu L.
    Yang Z.
    International Journal of Speech Technology, 2016, 19 (2) : 407 - 414
  • [33] Space-Filling Input Design for Nonlinear State-Space Identification
    Kiss, Mate
    Toth, Roland
    Schoukens, Maarten
    IFAC PAPERSONLINE, 2024, 58 (15): : 562 - 567
  • [34] On the Initialisation of the Recursive Prediction Error Method for Nonlinear System Identification
    Flynn, Andrew
    Tsachouridis, Vassilios A.
    Amann, Andreas
    2019 30TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2019,
  • [35] Automated Seizure Detection Based on State-Space Model Identification
    Wang, Zhuo
    Sperling, Michael R.
    Wyeth, Dale
    Guez, Allon
    SENSORS, 2024, 24 (06)
  • [36] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [37] Recursive identification of certain structured time-varying state-space models
    Moazzam, MH
    Hesketh, T
    Clements, DJ
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1997, 144 (05): : 489 - 497
  • [38] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [39] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [40] State space model: a magical tool for state prediction in Nonlinear systems
    Wang, Qifan
    Jin, Yuhong
    Lu, Zhenyong
    Gao, Qiang
    Ge, Xiangdong
    Li, Zhonggang
    Hou, Lei
    NONLINEAR DYNAMICS, 2025, 113 (07) : 6577 - 6603