Recursive identification of a nonlinear state space model

被引:0
|
作者
Wigren, Torbjoern [1 ,2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Uppsala Univ, Dept Informat Technol, Div Syst andControl, SE-75105 Uppsala, Sweden
关键词
averaging; convergence; nonlinear systems; prediction error method; state-space model; PREDICTION ERROR IDENTIFICATION; SYSTEM-IDENTIFICATION; CONVERGENCE;
D O I
10.1002/acs.3531
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The convergence of a recursive prediction error method is analyzed. The algorithm identifies a nonlinear continuous time state space model, parameterized by one right-hand side component of the differential equation and an output equation with a fixed differential gain, to avoid over-parametrization. The method minimizes the criterion by simulation using an Euler discretization. A stability analysis of the associated differential equations results in conditions for (local) convergence to a minimum of the criterion function. Simulations verify the theoretical analysis and illustrate the performance in the presence of unmodeled dynamics, by identification of the nonlinear drum boiler dynamics of a power plant model.
引用
收藏
页码:447 / 473
页数:27
相关论文
共 50 条
  • [21] Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method
    Ni, Zhiyu
    Liu, Jinguo
    Wu, Zhigang
    Shen, Xinhui
    CHINESE JOURNAL OF AERONAUTICS, 2019, 32 (02) : 513 - 530
  • [22] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184
  • [23] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [24] Simple recursive algorithm for linear-in-theparameters nonlinear model identification
    Li PingKang
    Jin TaoTao
    Du XiuXia
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2009, 52 (10): : 1739 - 1745
  • [25] State-space model identification of deterministic nonlinear systems: Nonlinear mapping technology and application of the Lyapunov theory
    Lyshevski, SE
    AUTOMATICA, 1998, 34 (05) : 659 - 664
  • [26] Comparison of some initialisation methods for the identification of nonlinear state-space models
    Van Mulders, Anne
    Vanbeylen, Laurent
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 807 - 811
  • [27] Identification of State-space Models by Modified Nonlinear LS Optimization Method
    Zhong Lusheng
    Yang Hui
    Lu Rongxiu
    Sun Baohua
    Meng Shasha
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1184 - 1187
  • [28] A recursive recomputation approach for smoothing in nonlinear state-space modeling: An attempt for reducing space complexity
    Nakamura, Kazuyuki
    Tsuchiya, Takashi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (11) : 5167 - 5178
  • [29] RECURSIVE PREDICTION ERROR METHODS FOR ONLINE ESTIMATION IN NONLINEAR STATE-SPACE MODELS
    LJUNGQUIST, D
    BALCHEN, JG
    MODELING IDENTIFICATION AND CONTROL, 1994, 15 (02) : 109 - 121
  • [30] Gradient-Based Parameter Identification Algorithms for Observer Canonical State Space Systems Using State Estimates
    Ma, Xingyun
    Ding, Feng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2015, 34 (05) : 1697 - 1709