Recursive identification of a nonlinear state space model

被引:0
|
作者
Wigren, Torbjoern [1 ,2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Uppsala Univ, Dept Informat Technol, Div Syst andControl, SE-75105 Uppsala, Sweden
关键词
averaging; convergence; nonlinear systems; prediction error method; state-space model; PREDICTION ERROR IDENTIFICATION; SYSTEM-IDENTIFICATION; CONVERGENCE;
D O I
10.1002/acs.3531
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The convergence of a recursive prediction error method is analyzed. The algorithm identifies a nonlinear continuous time state space model, parameterized by one right-hand side component of the differential equation and an output equation with a fixed differential gain, to avoid over-parametrization. The method minimizes the criterion by simulation using an Euler discretization. A stability analysis of the associated differential equations results in conditions for (local) convergence to a minimum of the criterion function. Simulations verify the theoretical analysis and illustrate the performance in the presence of unmodeled dynamics, by identification of the nonlinear drum boiler dynamics of a power plant model.
引用
收藏
页码:447 / 473
页数:27
相关论文
共 50 条
  • [1] A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem
    Li, Junhong
    Zheng, Wei Xing
    Gu, Juping
    Hua, Liang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (06) : 2374 - 2393
  • [2] Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle
    Wang, Xuehai
    Ding, Feng
    SIGNAL PROCESSING, 2015, 117 : 208 - 218
  • [3] A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem
    Junhong Li
    Wei Xing Zheng
    Juping Gu
    Liang Hua
    Circuits, Systems, and Signal Processing, 2018, 37 : 2374 - 2393
  • [4] Nonlinear state space model identification of synchronous generators
    Dehghani, M.
    Nikravesh, S. K. Y.
    ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (05) : 926 - 940
  • [5] Nonlinear Identification of an Aero-Engine Component Using Polynomial Nonlinear State Space Model
    Cooper, Samson B.
    Tiels, Koen
    DiMaio, Dario
    NONLINEAR DYNAMICS, VOL 1, 2019, : 261 - 273
  • [6] Parameters identification of nonlinear state space model of synchronous generator
    Kou, Pangao
    Zhou, Jianzhong
    Wang, Changqing
    Xiao, Han
    Zhang, Huifeng
    Li, Chaoshun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2011, 24 (07) : 1227 - 1237
  • [7] Local Model Networks for the Identification of Nonlinear State Space Models
    Schuessler, Max
    Muenker, Tobias
    Nelles, Oliver
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6437 - 6442
  • [8] Identification of nonlinear systems using Polynomial Nonlinear State Space models
    Paduart, Johan
    Lauwers, Lieve
    Swevers, Jan
    Smolders, Kris
    Schoukens, Johan
    Pintelon, Rik
    AUTOMATICA, 2010, 46 (04) : 647 - 656
  • [9] Parameter identification for Hammerstein nonlinear system with polynomial and state space model
    Li, Chenghao
    Li, Feng
    Cao, Qingfeng
    MEASUREMENT & CONTROL, 2023, 56 (1-2) : 327 - 336
  • [10] Recursive nonlinear-system identification using latent variables
    Mattsson, Per
    Zachariah, Dave
    Stoica, Petre
    AUTOMATICA, 2018, 93 : 343 - 351