IMPROVED REGULARITY OF HARMONIC DIFFEOMORPHIC EXTENSIONS ON QUASIHYPERBOLIC DOMAINS

被引:0
作者
Wang, Zhuang [1 ]
Xu, Haiqing [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Peoples R China
[2] Shandong Univ, Frontiers Sci Ctr Nonlinear Expectat, Res Ctr Math & Interdisciplinary Sci, Minist Educ China, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Poisson extension; Orlicz-Sobolev homeomorphisms; weighted Sobolev homeomorphisms; quasihyperbolic domains; BOUNDARY-CONDITIONS; HOLDER CONTINUITY; MAPPINGS; CAPACITY;
D O I
10.1007/s10473-023-0121-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Jordan domain satisfying certain hyperbolic growth conditions. Assume that phi is a homeomorphism from the boundary partial derivative X of X onto the unit circle. Denote by h the harmonic diffeomorphic extension of phi from X onto the unit disk. We establish the optimal Orlicz-Sobolev regularity and weighted Sobolev estimate of h. These generalize the Sobolev regularity of h in [A. Koski, J. Onninen, Sobolev homeomorphic extensions, J. Eur. Math. Soc. 23 (2021) 4065-4089, Theorem 3.1].
引用
收藏
页码:373 / 386
页数:14
相关论文
共 23 条
[11]   EXTENSION-THEOREMS FOR BMO [J].
JONES, PW .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1980, 29 (01) :41-66
[12]  
Koskela P, 1998, QUASICONFORMAL MAPPINGS AND ANALYSIS, P205
[13]   Quasihyperbolic boundary conditions and capacity: Holder continuity of quasiconformal mappings [J].
Koskela, P ;
Onninen, J ;
Tyson, JT .
COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (03) :416-435
[14]   Sobolev homeomorphic extensions onto John domains [J].
Koskela, Pekka ;
Koski, Aleksis ;
Onninen, Jani .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (10)
[15]   Controlled diffeomorphic extension of homeomorphisms [J].
Koskela, Pekka ;
Wang, Zhuang ;
Xu, Haiqing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :586-600
[16]  
Koski A, 2020, Arxiv, DOI arXiv:2008.09947
[17]   Sobolev homeomorphic extensions [J].
Koski, Aleksis ;
Onninen, Jani .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (12) :4065-4089
[18]  
Pommerenke Ch., 1992, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, DOI [10.1007/978-3-662-02770-7, DOI 10.1007/978-3-662-02770-7]
[19]  
Rohde S, 2001, REV MAT IBEROAM, V17, P643
[20]  
Tukia P., 1980, Annales Academiae Scientiarum Fennicae, Series AI (Mathematica), V5, P49