CHARACTERIZING EVEN AND UNEVEN-AGED SOUTHERN PINE FOREST USING TERRESTRIAL LASER SCANNING

被引:0
作者
Rocha, Kleydson Diego [1 ]
Schlickmanni, Monique Bohora [1 ]
Xia, Jinyi [1 ]
Leite, Rodrigo V. [2 ]
Klaubergi, Canine [1 ]
Sharma, Ajay [3 ]
Silva, Carlos Alberto [1 ]
机构
[1] Univ Florida, Remote Sensing & Artificial Intelligence Lab Silv, Forest Biometr, Sch Forest Fisheries & Geomat Sci, Gainesville, FL 32608 USA
[2] NASA Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA
[3] Auburn Univ, Coll Forestry Wildlife & Environm, Auburn, AL 36849 USA
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
LiDAR; TLS; Forest Structure; Longleaf pine; LEAF-AREA;
D O I
10.1109/IGARSS52108.2023.10282067
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Terrestrial Laser Scanning (TLS) has been used on forest inventories as an alternative to conventional in-field measurements given how effectively it can collect data. However, not enough emphasis has been given on using these sensors to describe different pine forests in the South. We aimed to analyze the effectiveness of TLS in characterizing even- and uneven-aged forest stands. After the data collection with the TLS, we developed a framework based on open-source tools in R for computing individual tree-level metrics (e.g. diameter at breast height (DBH), height, and leaf area index (LAI)). The TLS system showed great potential in capturing the differences between forest stands across those two silvicultural systems. The diameter class distributions of the even- and uneven-aged stands followed bell-shaped and J-distributions, respectively. This study demonstrates TLS as a powerful asset for obtaining forest inventory metrics with a reduced need for field data collection.
引用
收藏
页码:4258 / 4261
页数:4
相关论文
共 19 条
  • [1] [Anonymous], 2022, R R PROJ STAT COMP
  • [2] Chen X., 2020, DENDROBIOLOGY, V84
  • [3] Curtis R. O., 1978, GROWTH YIELD UNEVEN
  • [4] Adjudicating Perspectives on Forest Structure: How Do Airborne, Terrestrial, and Mobile Lidar-Derived Estimates Compare?
    Donager, Jonathon J.
    Meador, Andrew J. Sanchez
    Blackburn, Ryan C.
    [J]. REMOTE SENSING, 2021, 13 (12)
  • [5] Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar
    Hosoi, Fumiki
    Omasa, Kenji
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (12): : 3610 - 3618
  • [6] LiDAR Utility for Natural Resource Managers
    Hudak, Andrew Thomas
    Evans, Jeffrey Scott
    Smith, Alistair Matthew Stuart
    [J]. REMOTE SENSING, 2009, 1 (04) : 934 - 951
  • [7] Forest inventories by LiDAR data: A comparison of single tree segmentation and metric-based methods for inventories of a heterogeneous temperate forest
    Latifi, Hooman
    Fassnacht, Fabian E.
    Mueller, Joerg
    Tharani, Agalya
    Dech, Stefan
    Heurich, Marco
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 42 : 162 - 174
  • [8] Derivation, Validation, and Sensitivity Analysis of Terrestrial Laser Scanning-Based Leaf Area Index
    Li, Yumei
    Guo, Qinghua
    Tao, Shengli
    Zheng, Guang
    Zhao, Kaiguang
    Xue, Baolin
    Su, Yanjun
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2016, 42 (06) : 719 - 729
  • [9] International benchmarking of terrestrial laser scanning approaches for forest inventories
    Liang, Xinlian
    Hyyppa, Juha
    Kaartinen, Harri
    Lehtomaki, Matti
    Pyorala, Jiri
    Pfeifer, Norbert
    Holopainen, Markus
    Brolly, Gabor
    Pirotti, Francesco
    Hackenberg, Jan
    Huang, Huabing
    Jo, Hyun-Woo
    Katoh, Masato
    Liu, Luxia
    Mokros, Martin
    Morel, Jules
    Olofsson, Kenneth
    Poveda-Lopez, Jose
    Trochta, Jan
    Wang, Di
    Wang, Jinhu
    Xi, Zhouxi
    Yang, Bisheng
    Zheng, Guang
    Kankare, Ville
    Luoma, Ville
    Yu, Xiaowei
    Chen, Liang
    Vastaranta, Mikko
    Saarinen, Ninni
    Wang, Yunsheng
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 144 : 137 - 179
  • [10] Estimating Individual Tree Height and Diameter at Breast Height (DBH) from Terrestrial Laser Scanning (TLS) Data at Plot Level
    Liu, Guangjie
    Wang, Jinliang
    Dong, Pinliang
    Chen, Yun
    Liu, Zhiyuan
    [J]. FORESTS, 2018, 9 (07):