An IoT-Based Framework for Personalized Health Assessment and Recommendations Using Machine Learning

被引:6
|
作者
Jagatheesaperumal, Senthil Kumar [1 ]
Rajkumar, Snegha [1 ]
Suresh, Joshinika Venkatesh [1 ]
Gumaei, Abdu H. [2 ]
Alhakbani, Noura [3 ]
Uddin, Md. Zia [4 ]
Hassan, Mohammad Mehedi [5 ]
机构
[1] Mepco Schlenk Engn Coll, Dept Elect & Commun Engn, Sivakasi 626005, India
[2] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Sci, Al Kharj 11942, Saudi Arabia
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Technol, Riyadh 11543, Saudi Arabia
[4] SINTEF Digital, Software & Serv Innovat, N-0373 Oslo, Norway
[5] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11543, Saudi Arabia
关键词
diet and fitness; healthcare; IoT; machine learning; sensors; adults; recommendation; ARTIFICIAL-INTELLIGENCE; MONITORING-SYSTEM; CARE-SYSTEM; INTERNET; OPTIMIZATION; DISEASES; CLOUD; MODEL;
D O I
10.3390/math11122758
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To promote a healthy lifestyle, it is essential for individuals to maintain a well-balanced diet and engage in customized workouts tailored to their specific body conditions and health concerns. In this study, we present a framework that assesses an individual's existing health conditions, enabling people to evaluate their well-being conveniently without the need for a doctor's consultation. The framework includes a kit that measures various health indicators, such as body temperature, pulse rate, blood oxygen level, and body mass index (BMI), requiring minimal effort from nurses. To analyze the health parameters, we collected data from a diverse group of individuals aged 17-24, including both men and women. The dataset consists of pulse rate (BPM), blood oxygen level (SpO2), BMI, and body temperature, obtained through an integrated Internet of Things (IoT) unit. Prior to analysis, the data was augmented and balanced using machine learning algorithms. Our framework employs a two-stage classifier system to recommend a balanced diet and exercise based on the analyzed data. In this work, machine learning models are utilized to analyze specifically designed datasets for adult healthcare frameworks. Various techniques, including Random Forest, CatBoost classifier, Logistic Regression, and MLP classifier, are employed for this analysis. The algorithm demonstrates its highest accuracy when the training and testing datasets are divided in a 70:30 ratio, resulting in an average accuracy rate of approximately 99% for the mentioned algorithms. Through experimental analysis, we discovered that the CatBoost algorithm outperforms other approaches in terms of achieving maximum prediction accuracy. Additionally, we have developed an interactive web platform that facilitates easy interaction with the implemented framework, enhancing the user experience and accessibility.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Machine learning and IoT-based approach for tool condition monitoring: A review and future prospects
    Tran, Minh-Quang
    Doan, Hoang-Phuong
    Vu, Viet Q.
    Vu, Lien T.
    MEASUREMENT, 2023, 207
  • [22] A Novel IoT-based Framework for Non-Invasive Human Hygiene Monitoring using Machine Learning Techniques
    Faruk, Md Jobair Hossain
    Trivedi, Shashank
    Masum, Mohammad
    Valero, Maria
    Shahriar, Hossain
    Ahamed, Sheikh Iqbal
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 412 - 421
  • [23] Anomaly detection in IoT-based healthcare: machine learning for enhanced security
    Khan, Maryam Mahsal
    Alkhathami, Mohammed
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] IoT-based incubator monitoring and machine learning powered alarm predictions
    Celebioglu, Cansu
    Topalli, Ayca Kumluca
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (04) : 2837 - 2846
  • [25] A secure framework for IoT-based healthcare using blockchain and IPFS
    Rani, Deepa
    Kumar, Rajeev
    Chauhan, Naveen
    SECURITY AND PRIVACY, 2024, 7 (02)
  • [26] FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming
    Ángel Luis Perales Gómez
    Pedro E. López-de-Teruel
    Alberto Ruiz
    Ginés García-Mateos
    Gregorio Bernabé García
    Félix J. García Clemente
    Cluster Computing, 2022, 25 : 2163 - 2178
  • [27] Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG
    R. Lakshmi Devi
    V. Kalaivani
    The Journal of Supercomputing, 2020, 76 : 6533 - 6544
  • [28] Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG
    Devi, R. Lakshmi
    Kalaivani, V.
    JOURNAL OF SUPERCOMPUTING, 2020, 76 (09) : 6533 - 6544
  • [29] Human Activity Recognition Using an IoT-based Posture Corrector and Machine Learning
    Walee, Ravipa
    Phumekham, Nutchaya
    Laitrakun, Seksan
    Sueayan, Thitipa
    2022 7TH INTERNATIONAL CONFERENCE ON BUSINESS AND INDUSTRIAL RESEARCH (ICBIR2022), 2022, : 384 - 388
  • [30] IoT-based automated water pollution treatment using machine learning classifiers
    AlZubi, Ahmad Ali
    ENVIRONMENTAL TECHNOLOGY, 2024, 45 (12) : 2299 - 2307