Clarifying trust of materials property predictions using neural networks with distribution-specific uncertainty quantification

被引:9
作者
Gruich, Cameron J. [1 ,2 ]
Madhavan, Varun [1 ]
Wang, Yixin [3 ]
Goldsmith, Bryan R. [1 ,2 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Catalysis Sci & Technol Inst, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Stat, 1085 S Univ Ave, Ann Arbor, MI 48109 USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
computational catalysis; crystal graph convolutional neural networks; evidential regression; recalibration; calibration; DISCOVERY; ELECTROCATALYSTS; PROGRESS;
D O I
10.1088/2632-2153/accace
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is critical that machine learning (ML) model predictions be trustworthy for high-throughput catalyst discovery approaches. Uncertainty quantification (UQ) methods allow estimation of the trustworthiness of an ML model, but these methods have not been well explored in the field of heterogeneous catalysis. Herein, we investigate different UQ methods applied to a crystal graph convolutional neural network to predict adsorption energies of molecules on alloys from the Open Catalyst 2020 dataset, the largest existing heterogeneous catalyst dataset. We apply three UQ methods to the adsorption energy predictions, namely k-fold ensembling, Monte Carlo dropout, and evidential regression. The effectiveness of each UQ method is assessed based on accuracy, sharpness, dispersion, calibration, and tightness. Evidential regression is demonstrated to be a powerful approach for rapidly obtaining tunable, competitively trustworthy UQ estimates for heterogeneous catalysis applications when using neural networks. Recalibration of model uncertainties is shown to be essential in practical screening applications of catalysts using uncertainties.
引用
收藏
页数:16
相关论文
共 68 条
[31]   When Gaussian Process Meets Big Data: A Review of Scalable GPs [J].
Liu, Haitao ;
Ong, Yew-Soon ;
Shen, Xiaobo ;
Cai, Jianfei .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (11) :4405-4423
[32]  
Liu JZ, 2019, ADV NEUR IN, V32
[33]   A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts [J].
Mamun, Osman ;
Winther, Kirsten T. ;
Boes, Jacob R. ;
Bligaard, Thomas .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[34]   Five High-Impact Research Areas in Machine Learning for Materials Science [J].
Meredig, Bryce .
CHEMISTRY OF MATERIALS, 2019, 31 (23) :9579-9581
[35]  
Michelmore R, 2020, IEEE INT CONF ROBOT, P7344, DOI [10.1109/ICRA40945.2020.9196844, 10.1109/icra40945.2020.9196844]
[36]   Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting - A review [J].
Mohammed-Ibrahim, Jamesh ;
Sun, Xiaoming .
JOURNAL OF ENERGY CHEMISTRY, 2019, 34 :111-160
[37]   Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals [J].
Noh, Juhwan ;
Gu, Geun Ho ;
Kim, Sungwon ;
Jung, Yousung .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (04) :1996-2003
[38]   Trends in the exchange current for hydrogen evolution [J].
Norskov, JK ;
Bligaard, T ;
Logadottir, A ;
Kitchin, JR ;
Chen, JG ;
Pandelov, S ;
Norskov, JK .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :J23-J26
[39]   Bayesian neural networks for uncertainty quantification in data-driven materials modeling [J].
Olivier, Audrey ;
Shields, Michael D. ;
Graham-Brady, Lori .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
[40]   Bayesian Optimization of High-Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction** [J].
Pedersen, Jack K. ;
Clausen, Christian M. ;
Krysiak, Olga A. ;
Xiao, Bin ;
Batchelor, Thomas A. A. ;
Loeffler, Tobias ;
Mints, Vladislav A. ;
Banko, Lars ;
Arenz, Matthias ;
Savan, Alan ;
Schuhmann, Wolfgang ;
Ludwig, Alfred ;
Rossmeisl, Jan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (45) :24144-24152