Clarifying trust of materials property predictions using neural networks with distribution-specific uncertainty quantification

被引:9
作者
Gruich, Cameron J. [1 ,2 ]
Madhavan, Varun [1 ]
Wang, Yixin [3 ]
Goldsmith, Bryan R. [1 ,2 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Catalysis Sci & Technol Inst, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Stat, 1085 S Univ Ave, Ann Arbor, MI 48109 USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
computational catalysis; crystal graph convolutional neural networks; evidential regression; recalibration; calibration; DISCOVERY; ELECTROCATALYSTS; PROGRESS;
D O I
10.1088/2632-2153/accace
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is critical that machine learning (ML) model predictions be trustworthy for high-throughput catalyst discovery approaches. Uncertainty quantification (UQ) methods allow estimation of the trustworthiness of an ML model, but these methods have not been well explored in the field of heterogeneous catalysis. Herein, we investigate different UQ methods applied to a crystal graph convolutional neural network to predict adsorption energies of molecules on alloys from the Open Catalyst 2020 dataset, the largest existing heterogeneous catalyst dataset. We apply three UQ methods to the adsorption energy predictions, namely k-fold ensembling, Monte Carlo dropout, and evidential regression. The effectiveness of each UQ method is assessed based on accuracy, sharpness, dispersion, calibration, and tightness. Evidential regression is demonstrated to be a powerful approach for rapidly obtaining tunable, competitively trustworthy UQ estimates for heterogeneous catalysis applications when using neural networks. Recalibration of model uncertainties is shown to be essential in practical screening applications of catalysts using uncertainties.
引用
收藏
页数:16
相关论文
共 68 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]  
Amini A., 2020, Advances in Neural Information Processing Systems (NeurIPS 2020), V33, P14927
[3]  
Brandstetter J., 2021, arXiv, DOI 10.48550/arXiv.2110.02905
[4]   ALGORITHM WITH GUARANTEED CONVERGENCE FOR FINDING A ZERO OF A FUNCTION [J].
BRENT, RP .
COMPUTER JOURNAL, 1971, 14 (04) :422-&
[5]   Open Catalyst 2020 (OC20) Dataset and Community Challenges [J].
Chanussot, Lowik ;
Das, Abhishek ;
Goyal, Siddharth ;
Lavril, Thibaut ;
Shuaibi, Muhammed ;
Riviere, Morgane ;
Tran, Kevin ;
Heras-Domingo, Javier ;
Ho, Caleb ;
Hu, Weihua ;
Palizhati, Aini ;
Sriram, Anuroop ;
Wood, Brandon ;
Yoon, Junwoong ;
Parikh, Devi ;
Zitnick, C. Lawrence ;
Ulissi, Zachary .
ACS CATALYSIS, 2021, 11 (10) :6059-6072
[6]  
Chung Y., 2021, arXiv
[7]  
Chung Y, 2021, ADV NEUR IN, V34
[8]   Ensemble methods in machine learning [J].
Dietterich, TG .
MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 :1-15
[9]  
Gal Y, 2016, PR MACH LEARN RES, V48
[10]  
Gasteiger J., 2020, arXiv