Distinct transcriptomic and epigenomic modalities underpin human memory T cell subsets and their activation potential

被引:12
作者
Rose, James R. [1 ,2 ]
Akdogan-Ozdilek, Bagdeser [1 ,2 ]
Rahmberg, Andrew R. [3 ]
Powell, Michael D. [1 ,2 ]
Hicks, Sakeenah L. [1 ,2 ]
Scharer, Christopher D. [1 ,2 ]
Boss, Jeremy M. [1 ,2 ]
机构
[1] Emory Univ, Dept Microbiol & Immunol, Sch Med, Atlanta, GA 30322 USA
[2] Emory Univ, Emory Vaccine Ctr, Sch Med, Atlanta, GA 30322 USA
[3] NIAID, Div Intramural Res, Barrier Immun Sect, Lab Viral Dis, Bethesda, MD USA
关键词
LINEAGE RELATIONSHIP; REGULATORY ELEMENTS; METABOLIC PATHWAYS; EFFECTOR; DIFFERENTIATION; FATE; ACCESSIBILITY; REPRESSES; INFECTION; MIGRATION;
D O I
10.1038/s42003-023-04747-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An integrated analysis uncovers transcriptional and epigenetic differences of human circulating memory T cell subsets and identifies unique transcription factor networks associated with memory subset differentiation. Human memory T cells (MTC) are poised to rapidly respond to antigen re-exposure. Here, we derived the transcriptional and epigenetic programs of resting and ex vivo activated, circulating CD4(+) and CD8(+) MTC subsets. A progressive gradient of gene expression from naive to T-CM to T-EM is observed, which is accompanied by corresponding changes in chromatin accessibility. Transcriptional changes suggest adaptations of metabolism that are reflected in altered metabolic capacity. Other differences involve regulatory modalities comprised of discrete accessible chromatin patterns, transcription factor binding motif enrichment, and evidence of epigenetic priming. Basic-helix-loop-helix factor motifs for AHR and HIF1A distinguish subsets and predict transcription networks to sense environmental changes. Following stimulation, primed accessible chromatin correlate with an augmentation of MTC gene expression as well as effector transcription factor gene expression. These results identify coordinated epigenetic remodeling, metabolic, and transcriptional changes that enable MTC subsets to ultimately respond to antigen re-encounters more efficiently.
引用
收藏
页数:19
相关论文
共 84 条
[1]   Immunological memory and protective immunity: Understanding their relation [J].
Ahmed, R ;
Gray, D .
SCIENCE, 1996, 272 (5258) :54-60
[2]   Metabolic pathways in T cell activation and lineage differentiation [J].
Almeida, Luis ;
Lochner, Matthias ;
Berod, Luciana ;
Sparwasser, Tim .
SEMINARS IN IMMUNOLOGY, 2016, 28 (05) :514-524
[3]   Genome-wide Analysis of Histone Methylation Reveals Chromatin State-Based Regulation of Gene Transcription and Function of Memory CD8+ T Cells [J].
Araki, Yasuto ;
Wang, Zhibin ;
Zang, Chongzhi ;
Wood, William H., III ;
Schones, Dustin ;
Cui, Kairong ;
Roh, Tae-Young ;
Lhotsky, Brad ;
Wersto, Robert P. ;
Peng, Weiqun ;
Becker, Kevin G. ;
Zhao, Keji ;
Weng, Nan-ping .
IMMUNITY, 2009, 30 (06) :912-925
[4]   SCENITH: A Flow Cytometry-Based Method to Functionally Profile Energy Metabolism with Single-Cell Resolution [J].
Arguello, Rafael J. ;
Combes, Alexis J. ;
Char, Remy ;
Gigan, Julien-Paul ;
Baaziz, Ania I. ;
Bousiquot, Evens ;
Camosseto, Voahirana ;
Samad, Bushra ;
Tsui, Jessica ;
Yan, Peter ;
Boissonneau, Sebastien ;
Figarella-Branger, Dominique ;
Gatti, Evelina ;
Tabouret, Emeline ;
Krummel, Matthew F. ;
Pierre, Philippe .
CELL METABOLISM, 2020, 32 (06) :1063-1075.e7
[5]   Rapid Recall Ability of Memory T cells is Encoded in their Epigenome [J].
Barski, Artem ;
Cuddapah, Suresh ;
Kartashov, Andrey V. ;
Liu, Chong ;
Imamichi, Hiromi ;
Yang, Wenjing ;
Peng, Weiqun ;
Lane, H. Clifford ;
Zhao, Keji .
SCIENTIFIC REPORTS, 2017, 7
[6]   Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation [J].
Best, J. Adam ;
Blair, David A. ;
Knell, Jamie ;
Yang, Edward ;
Mayya, Viveka ;
Doedens, Andrew ;
Dustin, Michael L. ;
Goldrath, Ananda W. .
NATURE IMMUNOLOGY, 2013, 14 (04) :404-412
[7]   Chromatin priming elements establish immunological memory in T cells without activating transcription [J].
Bevington, Sarah L. ;
Cauchy, Pierre ;
Cockerill, Peter N. .
BIOESSAYS, 2017, 39 (02)
[8]   Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming [J].
Buck, Michael D. ;
O'Sullivan, David ;
Geltink, Ramon I. Klein ;
Curtis, Jonathan D. ;
Chang, Chih-Hao ;
Sanin, David E. ;
Qiu, Jing ;
Kretz, Oliver ;
Braas, Daniel ;
van der Windt, Gerritje J. W. ;
Chen, Qiongyu ;
Huang, Stanley Ching-Cheng ;
O'Neill, Christina M. ;
Edelson, Brian T. ;
Pearce, Edward J. ;
Sesaki, Hiromi ;
Huber, Tobias B. ;
Rambold, Angelika S. ;
Pearce, Erika L. .
CELL, 2016, 166 (01) :63-76
[9]  
Buenrostro JD, 2013, NAT METHODS, V10, P1213, DOI [10.1038/NMETH.2688, 10.1038/nmeth.2688]
[10]   Transcription Factor ABF-1 Suppresses Plasma Cell Differentiation but Facilitates Memory B Cell Formation [J].
Chiu, Yi-Kai ;
Lin, I-Ying ;
Su, Shin-Tang ;
Wang, Kuan-Hsiung ;
Yang, Shii-Yi ;
Tsai, Dong-Yan ;
Hsieh, Yi-Ting ;
Lin, Kuo-I .
JOURNAL OF IMMUNOLOGY, 2014, 193 (05) :2207-2217