Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries

被引:34
作者
Yang, Guanming [1 ,7 ]
Hou, Wangshu [1 ]
Zhai, Yanfang [1 ]
Chen, Zongyuan [1 ,2 ]
Liu, Chengyong [2 ]
Ouyang, Chuying
Liang, Xiao [3 ]
Paoprasert, Peerasak [4 ]
Hu, Ning [5 ,6 ]
Song, Shufeng [1 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] Fujian Sci & Technol Innovat Lab Energy Devices C, Ningde, Fujian, Peoples R China
[3] Hunan Univ, Coll Chem & Chem Engn, Changsha, Hunan, Peoples R China
[4] Thammasat Univ, Fac Sci & Technol, Dept Chem, Pathum Thani, Thailand
[5] Hebei Univ Technol, Natl Engn Res Ctr Technol Innovat Method & Tool, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300401, Peoples R China
[6] Hebei Univ Technol, Sch Mech Engn, Tianjin 300401, Peoples R China
[7] Chongqing Changan New Energy Vehicle Co Ltd, Chongqing, Peoples R China
关键词
cathode electrolyte interphase; concentrated quasi-solid electrolyte; lithium metal batteries; ring-opening polymerization; solid electrolyte interphase; ION-TRANSPORT; STABILITY; EFFICIENCY; ADDITIVES; MECHANISM; ANODE; XPS;
D O I
10.1002/eom2.12325
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To achieve next-generation lithium metal batteries (LMBs) with desirable specific energy and reliability, the electrolyte shown simultaneously high reductive stability toward lithium metal anode and oxidative stability toward high-voltage cathode is of great importance. Here, we report for the first time that high-concentration lithium bis(fluorosulfonyl)imide (LiFSI) initiates ring-opening polymerization of 1,3-dioxolane in presence of ethylene carbonate and ethylmethyl carbonate to produce in-situ a novel polymeric concentrated quasi-solid electrolyte (poly-CQSE). The unique poly-CQSE with 10 M LiFSI forms a mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase on lithium metal anode, and a F-rich conformal cathode electrolyte interphase on LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode simultaneously. As a result, the poly-CQSE not only enables stable Li plating/stripping of metallic Li anode at a sound Coulombic efficiency of 95.3% without dendrite growth, but also enables a stable cycling of the Li||NCM523 quasi-solid-state LMB at a capacity retention of 94% over 100 cycles.
引用
收藏
页数:14
相关论文
共 67 条
[1]   Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries [J].
An, Yongling ;
Fei, Huifang ;
Zeng, Guifang ;
Xu, Xiaoyan ;
Ci, Lijie ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
NANO ENERGY, 2018, 47 :503-511
[2]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[3]   NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries [J].
Bonizzoni, Simone ;
Ferrara, Chiara ;
Berbenni, Vittorio ;
Anselmi-Tamburini, Umberto ;
Mustarelli, Piercarlo ;
Tealdi, Cristina .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (11) :6142-6149
[4]   Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode - electrolyte stabilization [J].
Borodin, Oleg .
CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 13 :86-93
[5]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[6]   Electrolyte design strategies and research progress for room-temperature sodium-ion batteries [J].
Che, Haiying ;
Chen, Suli ;
Xie, Yingying ;
Wang, Hong ;
Amine, Khalil ;
Liao, Xiao-Zhen ;
Ma, Zi-Feng .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1075-1101
[7]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[8]   In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries [J].
Chen, Shaojie ;
Wang, Junye ;
Zhang, Zhihua ;
Wu, Linbin ;
Yao, Lili ;
Wei, Zhenyao ;
Deng, Yonghong ;
Xie, Dongjiu ;
Yao, Xiayin ;
Xu, Xiaoxiong .
JOURNAL OF POWER SOURCES, 2018, 387 :72-80
[9]   Anisotropic Ion Transport in a Poly(ethylene oxide)-LiClO4 Solid State Electrolyte Templated by Graphene Oxide [J].
Cheng, Shan ;
Smith, Derrick M. ;
Li, Christopher Y. .
MACROMOLECULES, 2015, 48 (13) :4503-4510
[10]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473