Applications of statistical methods and machine learning in the space sciences

被引:2
作者
Poduval, Bala [1 ,2 ]
Pitman, Karly M. [2 ]
Verkhoglyadova, Olga [3 ]
Wintoft, Peter [4 ]
机构
[1] Univ New Hampshire, Inst Study Earth Oceans & Space, Space Sci Ctr, Durham, NH 03824 USA
[2] Space Sci Inst, Boulder, CO 80301 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
[4] Swedish Inst Space Phys, Lund, Sweden
来源
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES | 2023年 / 10卷
基金
美国国家科学基金会;
关键词
machine learning; statistical methods; virtual conference; space science; astrophysics; space weather; heliophysics; artificial intelligence; SOLAR-WIND DATA; GEOMAGNETIC STORMS; PREDICTIONS;
D O I
10.3389/fspas.2023.1163530
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Machine Learning Advances in Microbiology: A Review of Methods and Applications
    Jiang, Yiru
    Luo, Jing
    Huang, Danqing
    Liu, Ya
    Li, Dan-dan
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [42] Constructing Skeleton for Parallel Applications with Machine Learning Methods
    Zhang, Zihang
    Sun, Jingwei
    Zhang, Jiepeng
    Qin, Yuze
    Sun, Guangzhong
    PROCEEDINGS OF THE 48TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS (ICPP 2019), 2019,
  • [43] Applications of Machine Learning Methods in Drug Toxicity Prediction
    Zhang, Li
    Zhang, Hui
    Ai, Haixin
    Hu, Huan
    Li, Shimeng
    Zhao, Jian
    Liu, Hongsheng
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2018, 18 (12) : 987 - 997
  • [44] Machine Learning for Software Analysis: Models, Methods, and Applications
    Bennaceur, Amel
    Meinke, Karl
    MACHINE LEARNING FOR DYNAMIC SOFTWARE ANALYSIS: POTENTIALS AND LIMITS, 2018, 11026 : 3 - 49
  • [45] Machine Learning Methods for Remote Sensing Applications: An Overview
    Schulz, Karsten
    Haensch, Ronny
    Soergel, Uwe
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS IX, 2018, 10790
  • [46] Machine Learning Methods in Weather and Climate Applications: A Survey
    Chen, Liuyi
    Han, Bocheng
    Wang, Xuesong
    Zhao, Jiazhen
    Yang, Wenke
    Yang, Zhengyi
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [47] Machine learning for the educational sciences
    Hilbert, Sven
    Coors, Stefan
    Kraus, Elisabeth
    Bischl, Bernd
    Lindl, Alfred
    Frei, Mario
    Wild, Johannes
    Krauss, Stefan
    Goretzko, David
    Stachl, Clemens
    REVIEW OF EDUCATION, 2021, 9 (03):
  • [48] Machine Learning Methods for Ranking
    Rahangdale, Ashwini
    Raut, Shital
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2019, 29 (06) : 729 - 761
  • [49] Early Prediction in Classification of Cardiovascular Diseases with Machine Learning, Neuro-Fuzzy and Statistical Methods
    Taylan, Osman
    Alkabaa, Abdulaziz S. S.
    Alqabbaa, Hanan S. S.
    Pamukcu, Esra
    Leiva, Victor
    BIOLOGY-BASEL, 2023, 12 (01):
  • [50] An urgent call for robust statistical methods in reliable feature importance analysis across machine learning
    Takefuji, Yoshiyasu
    JOURNAL OF CATALYSIS, 2025, 446