Atomic Insights into Advances and Issues in Low-Temperature Electrolytes

被引:87
作者
Hou, Ruilin [1 ,2 ]
Guo, Shaohua [1 ,2 ]
Zhou, Haoshen [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Frontiers Sci Ctr Crit Earth Mat Cycling, Collaborat Innovat Ctr Adv Microstruct,Natl Lab So, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
electrochemical energy storage; fundamental interactions; ion transport; low-temperature electrolytes; solvation structure; LITHIUM-ION BATTERY; IN-SALT ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; DIELECTRIC-CONSTANT; BINARY CARBONATES; CATHODE MATERIAL; LIFEPO4; CATHODE; METAL BATTERIES; ENERGY-STORAGE; PHASE-DIAGRAMS;
D O I
10.1002/aenm.202300053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of low-temperature electrolytes is a key technology to improve the low-temperature performance of electrochemical energy storage devices and expand their application fields. However, the current design strategies for low-temperature electrolytes remain in the optimization of formula, without systematic and in-depth consideration of the internal relationship between the fundamental interactions and performances of electrolytes at low temperature. Here, starting from the four fundamental interactions among cations, anions, and solvents in the electrolyte, this review for the first time analyzes the temperature-dependent mechanisms of their interactions and corresponding physicochemical properties of electrolytes from atomic insights. Then, the research progress in low-temperature electrolytes is summarized according to the relationships of these interactions. The possible new development directions in the future are also pointed out. This review provides a theoretical reference for the design of low-temperature electrolytes.
引用
收藏
页数:20
相关论文
共 174 条
[1]   High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte [J].
Abbas, Qamar ;
Beguin, Francois .
JOURNAL OF POWER SOURCES, 2016, 318 :235-241
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   The surface temperature of Europa [J].
Ashkenazy, Yosef .
HELIYON, 2019, 5 (06)
[4]   Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2 [J].
Bhide, Amrtha ;
Hofmann, Jonas ;
Duerr, Anna Katharina ;
Janek, Juergen ;
Adelhelm, Philipp .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (05) :1987-1998
[5]   Understanding Li+-Solvent Interaction in Nonaqueous Carbonate Electrolytes with 17O NMR [J].
Bogle, Xavier ;
Vazquez, Rafael ;
Greenbaum, Steven ;
Cresce, Arthur von Wald ;
Xu, Kang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (10) :1664-1668
[6]   Uncharted Waters: Super-Concentrated Electrolytes [J].
Borodin, Oleg ;
Self, Julian ;
Persson, Kristin A. ;
Wang, Chunsheng ;
Xu, Kang .
JOULE, 2020, 4 (01) :69-100
[7]   All -climate aqueous supercapacitor enabled by a deep eutectic solvent electrolyte based on salt hydrate [J].
Bu, Xudong ;
Zhang, Yurong ;
Sun, Yinglun ;
Su, Lijun ;
Meng, Jianing ;
Lu, Xionggang ;
Yan, Xingbin .
JOURNAL OF ENERGY CHEMISTRY, 2020, 49 :198-204
[8]   A low-cost "water-in-salt" electrolyte for a 2.3 V high-rate carbon-based supercapacitor [J].
Bu, Xudong ;
Su, Lijun ;
Dou, Qingyun ;
Lei, Shulai ;
Yan, Xingbin .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (13) :7541-7547
[9]  
Busche MR, 2016, NAT CHEM, V8, P426, DOI [10.1038/NCHEM.2470, 10.1038/nchem.2470]
[10]   Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2 [J].
Cai, Guanglan ;
Guo, Ruisong ;
Liu, Li ;
Yang, Yuexia ;
Zhang, Chao ;
Wu, Chen ;
Guo, Weina ;
Jiang, Hong .
JOURNAL OF POWER SOURCES, 2015, 288 :136-144