Enhancing Built-in Electric Fields for Efficient Photocatalytic Hydrogen Evolution by Encapsulating C60 Fullerene into Zirconium-Based Metal-Organic Frameworks

被引:64
作者
Liu, Liping [1 ]
Meng, Haibing [2 ]
Chai, Yongqiang [3 ,4 ]
Chen, Xianjie [5 ]
Xu, Jingyi [1 ]
Liu, Xiaolong [1 ,6 ]
Liu, Weixu
Guldi, Dirk M. [3 ,4 ]
Zhu, Yongfa [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Taiyuan Univ Technol, Coll Chem, Taiyuan 030024, Peoples R China
[3] Friedrich Alexander Univ Erlangen, Dept Chem & Pharm, Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen, Interdisciplinary Ctr Mol Mat, Erlangen, Germany
[5] South west Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Peoples R China
[6] Chinese Acad Sci, Natl Ctr Nanosci & Technol, Lab Theoret & Computat Nanosci, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Charge Transfer; Host-Guest Systems; Metal-Organic Frameworks; Photocatalytic Hydrogen Evolution; Robust Internal Electric Field; MOF; STATE; CONDUCTIVITY; SEPARATION;
D O I
10.1002/anie.202217897
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-efficiency photocatalysts based on metal-organic frameworks (MOFs) are often limited by poor charge separation and slow charge-transfer kinetics. Herein, a novel MOF photocatalyst is successfully constructed by encapsulating C-60 into a nano-sized zirconium-based MOF, NU-901. By virtue of host-guest interactions and uneven charge distribution, a substantial electrostatic potential difference is set-up in C-60@NU-901. The direct consequence is a robust built-in electric field, which tends to be 10.7 times higher in C-60@NU-901 than that found in NU-901. In the catalyst, photogenerated charge carriers are efficiently separated and transported to the surface. For example, photocatalytic hydrogen evolution reaches 22.3 mmol g(-1) h(-1) for C-60@NU-901, which is among the highest values for MOFs. Our concept of enhancing charge separation by harnessing host-guest interactions constitutes a promising strategy to design photocatalysts for efficient solar-to-chemical energy conversion.
引用
收藏
页数:7
相关论文
共 48 条
[1]  
[Anonymous], 2016, ANGEW CHEM, V128, P5504
[2]  
[Anonymous], 2016, ANGEW CHEM, V128, P6828
[3]  
[Anonymous], 2019, ANGEW CHEM, V131, P10304
[4]   In Situ Switching of Photoinduced Electron Transfer Direction by Regulating the Redox State in Fullerene-Based Dyads [J].
Chai, Yongqiang ;
Liu, Xiaolong ;
Wu, Bo ;
Liu, Liping ;
Wang, Zhuan ;
Weng, Yuxiang ;
Wang, Chunru .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (09) :4411-4418
[5]  
Chen CX, 2022, ANGEW CHEM INT EDIT, V61, DOI [10.1002/ange.202116874, 10.1002/anie.202114071]
[6]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[7]   Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal-Organic Framework Photophysics [J].
Deria, Pravas ;
Yu, Jierui ;
Smith, Tanner ;
Balaraman, Rajesh P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (16) :5973-5983
[8]   Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production [J].
Dhakshinamoorthy, Amarajothi ;
Asiri, Abdullah M. ;
Garcia, Hermenegildo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (18) :5414-5445
[9]   A porous, electrically conductive hexa-zirconium( IV)metal-organic framework [J].
Goswami, Subhadip ;
Ray, Debmalya ;
Otake, Ken-ichi ;
Kung, Chung-Wei ;
Garibay, Sergio J. ;
Islamoglu, Timur ;
Atilgan, Ahmet ;
Cui, Yuexing ;
Cramer, Christopher J. ;
Farha, Omar K. ;
Hupp, Joseph T. .
CHEMICAL SCIENCE, 2018, 9 (19) :4477-4482
[10]   Recent Progress in Luminous Particle-Encapsulated Host-Guest Metal-Organic Frameworks for Optical Applications [J].
Guo, Bing-Bing ;
Yin, Jia-Cheng ;
Li, Na ;
Fu, Zi-Xuan ;
Han, Xiao ;
Xu, Jialiang ;
Bu, Xian-He .
ADVANCED OPTICAL MATERIALS, 2021, 9 (23)