Orthogonal Eisenstein series and theta lifts

被引:1
作者
Kiefer, Paul [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
关键词
Non-holomorphic Eisenstein series; Eisenstein series; orthogonal group; theta lift; Borcherds lift; FORMS;
D O I
10.1142/S1793042123500641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the additive Borcherds lifts of vector-valued non-holomorphic Eisenstein series are orthogonal non-holomorphic Eisenstein series for O(2,l). Using this we give another proof that they have a meromorphic continuation, calculate their Fourier expansion and show that they have a functional equation analogous to the classical case. Moreover, we will investigate the image of Borcherds lift and give a sufficient condition for surjectivity.
引用
收藏
页码:1305 / 1335
页数:31
相关论文
共 12 条
[1]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[2]   Eisenstein series attached to lattices and modular forms on orthogonal groups [J].
Bruinier, JH ;
Kuss, M .
MANUSCRIPTA MATHEMATICA, 2001, 106 (04) :443-459
[3]  
Bruinier JH, 2002, LECT NOTES MATH, V1780, P1
[4]   Integrals of automorphic Green's functions associated to Heegner divisors [J].
Bruinier, JH ;
Kühn, U .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (31) :1687-1729
[5]  
Diamond F., 2005, A first course in modular forms
[6]  
Erdelyi Arthur, 1954, Tables of Integral Transforms, VI
[7]   Some modular varieties of low dimension [J].
Freitag, E ;
Hermann, CF .
ADVANCES IN MATHEMATICS, 2000, 152 (02) :203-287
[8]  
HEJHAL DA, 1983, LECT NOTES MATH, V1001, P1
[9]   Formulas for non-holomorphic Eisenstein series and for the Riemann zeta function at odd integers [J].
O'Sullivan, Cormac .
RESEARCH IN NUMBER THEORY, 2018, 4
[10]   On the classification of automorphic products and generalized Kac-Moody algebras [J].
Scheithauer, NR .
INVENTIONES MATHEMATICAE, 2006, 164 (03) :641-678