Deep learning-based classification of eye diseases using Convolutional Neural Network for OCT images

被引:3
作者
Elkholy, Mohamed [1 ]
Marzouk, Marwa A. [2 ]
机构
[1] October 6 Univ, Fac Informat Syst & Comp Sci, Giza, Egypt
[2] Matrouh Univ, Fac Comp & Artificial Intelligence, Informat Technol Dept, Matrouh, Egypt
来源
FRONTIERS IN COMPUTER SCIENCE | 2024年 / 5卷
基金
英国科研创新办公室;
关键词
artificial intelligence; CNN; deep learning; OCT images; eye diseases; convolution layer; OPTICAL COHERENCE TOMOGRAPHY; SEGMENTATION; CATARACT;
D O I
10.3389/fcomp.2023.1252295
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment. Any damage that occurs to retinal tissues that cannot be recovered can result in permanent degradation or even complete loss of sight. The proposed deep-learning algorithm detects three different diseases from features extracted from Optical Coherence Tomography (OCT) images. The deep-learning algorithm uses CNN to classify OCT images into four categories. The four categories are Normal retina, Diabetic Macular Edema (DME), Choroidal Neovascular Membranes (CNM), and Age-related Macular Degeneration (AMD). The proposed work uses publicly available OCT retinal images as a dataset. The experimental results show significant enhancement in classification accuracy while detecting the features of the three listed diseases.
引用
收藏
页数:12
相关论文
共 43 条
  • [1] Akil M., 2021, State of the Art in Neural Networks and their Applications, DOI [10.1016/B978-0-12-819740-0.00002-4, DOI 10.1016/B978-0-12-819740-0.00002-4]
  • [2] The Relationship Between Dry Eye Disease and Digital Screen Use
    Al-Mohtaseb, Zaina
    Schachter, Scott
    Lee, Bridgitte Shen
    Garlich, Jaclyn
    Trattler, William
    [J]. CLINICAL OPHTHALMOLOGY, 2021, 15 : 3811 - 3820
  • [3] Alqudah A., 2021, International Journal of Intelligent Systems and Applications in Engineering, V9, P91, DOI DOI 10.18201/IJISAE.2021.236
  • [4] Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images
    An, Guangzhou
    Omodaka, Kazuko
    Hashimoto, Kazuki
    Tsuda, Satoru
    Shiga, Yukihiro
    Takada, Naoko
    Kikawa, Tsutomu
    Yokota, Hideo
    Akiba, Masahiro
    Nakazawa, Toru
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
  • [5] Awais M, 2017, IEEE I C SIGNAL IMAG, P489, DOI 10.1109/ICSIPA.2017.8120661
  • [6] RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge
    Bogunovic, Hrvoje
    Venhuizen, Freerk
    Klimscha, Sophie
    Apostolopoulos, Stefanos
    Bab-Hadiashar, Alireza
    Bagci, Ulas
    Beg, Mirza Faisal
    Bekalo, Loza
    Chen, Qiang
    Ciller, Carlos
    Gopinath, Karthik
    Gostar, Amirali K.
    Jeon, Kiwan
    Ji, Zexuan
    Kang, Sung Ho
    Koozekanani, Dara D.
    Lu, Donghuan
    Morley, Dustin
    Parhi, Keshab K.
    Park, Hyoung Suk
    Rashno, Abdolreza
    Sarunic, Marinko
    Shaikh, Saad
    Sivaswamy, Jayanthi
    Tennakoon, Ruwan
    Yadav, Shivin
    De Zanet, Sandro
    Waldstein, Sebastian M.
    Gerendas, Bianca S.
    Klaver, Caroline
    Sanchez, Clara, I
    Schmidt-Erfurth, Ursula
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) : 1858 - 1874
  • [7] BOLDT HC, 1990, CURR OPIN OPHTHALMOL, V1, P247
  • [8] Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks
    Burlina, Philippe M.
    Joshi, Neil
    Pekala, Michael
    Pacheco, Katia D.
    Freund, David E.
    Bressler, Neil M.
    [J]. JAMA OPHTHALMOLOGY, 2017, 135 (11) : 1170 - 1176
  • [9] Chan GCY, 2017, IEEE I C SIGNAL IMAG, P493, DOI 10.1109/ICSIPA.2017.8120662
  • [10] El Kholy M, 2021, INT J ADV COMPUT SC, V12, P233