Deep learning-based classification of eye diseases using Convolutional Neural Network for OCT images

被引:6
作者
Elkholy, Mohamed [1 ]
Marzouk, Marwa A. [2 ]
机构
[1] October 6 Univ, Fac Informat Syst & Comp Sci, Giza, Egypt
[2] Matrouh Univ, Fac Comp & Artificial Intelligence, Informat Technol Dept, Matrouh, Egypt
来源
FRONTIERS IN COMPUTER SCIENCE | 2024年 / 5卷
基金
英国科研创新办公室;
关键词
artificial intelligence; CNN; deep learning; OCT images; eye diseases; convolution layer; OPTICAL COHERENCE TOMOGRAPHY; SEGMENTATION; CATARACT;
D O I
10.3389/fcomp.2023.1252295
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning shows promising results in extracting useful information from medical images. The proposed work applies a Convolutional Neural Network (CNN) on retinal images to extract features that allow early detection of ophthalmic diseases. Early disease diagnosis is critical to retinal treatment. Any damage that occurs to retinal tissues that cannot be recovered can result in permanent degradation or even complete loss of sight. The proposed deep-learning algorithm detects three different diseases from features extracted from Optical Coherence Tomography (OCT) images. The deep-learning algorithm uses CNN to classify OCT images into four categories. The four categories are Normal retina, Diabetic Macular Edema (DME), Choroidal Neovascular Membranes (CNM), and Age-related Macular Degeneration (AMD). The proposed work uses publicly available OCT retinal images as a dataset. The experimental results show significant enhancement in classification accuracy while detecting the features of the three listed diseases.
引用
收藏
页数:12
相关论文
共 43 条
[1]  
Akil M., 2021, State of the Art in Neural Networks and their Applications, DOI [10.1016/B978-0-12-819740-0.00002-4, DOI 10.1016/B978-0-12-819740-0.00002-4]
[2]   The Relationship Between Dry Eye Disease and Digital Screen Use [J].
Al-Mohtaseb, Zaina ;
Schachter, Scott ;
Lee, Bridgitte Shen ;
Garlich, Jaclyn ;
Trattler, William .
CLINICAL OPHTHALMOLOGY, 2021, 15 :3811-3820
[3]  
Alqudah A., 2021, Int J Intell Syst Applic Eng, V9, P91, DOI [10.18201/ijisae.2021.236, DOI 10.18201/IJISAE.2021.236]
[4]   Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images [J].
An, Guangzhou ;
Omodaka, Kazuko ;
Hashimoto, Kazuki ;
Tsuda, Satoru ;
Shiga, Yukihiro ;
Takada, Naoko ;
Kikawa, Tsutomu ;
Yokota, Hideo ;
Akiba, Masahiro ;
Nakazawa, Toru .
JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
[5]  
Awais M, 2017, IEEE I C SIGNAL IMAG, P489, DOI 10.1109/ICSIPA.2017.8120661
[6]   RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge [J].
Bogunovic, Hrvoje ;
Venhuizen, Freerk ;
Klimscha, Sophie ;
Apostolopoulos, Stefanos ;
Bab-Hadiashar, Alireza ;
Bagci, Ulas ;
Beg, Mirza Faisal ;
Bekalo, Loza ;
Chen, Qiang ;
Ciller, Carlos ;
Gopinath, Karthik ;
Gostar, Amirali K. ;
Jeon, Kiwan ;
Ji, Zexuan ;
Kang, Sung Ho ;
Koozekanani, Dara D. ;
Lu, Donghuan ;
Morley, Dustin ;
Parhi, Keshab K. ;
Park, Hyoung Suk ;
Rashno, Abdolreza ;
Sarunic, Marinko ;
Shaikh, Saad ;
Sivaswamy, Jayanthi ;
Tennakoon, Ruwan ;
Yadav, Shivin ;
De Zanet, Sandro ;
Waldstein, Sebastian M. ;
Gerendas, Bianca S. ;
Klaver, Caroline ;
Sanchez, Clara, I ;
Schmidt-Erfurth, Ursula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1858-1874
[7]  
BOLDT HC, 1990, CURR OPIN OPHTHALMOL, V1, P247
[8]   Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks [J].
Burlina, Philippe M. ;
Joshi, Neil ;
Pekala, Michael ;
Pacheco, Katia D. ;
Freund, David E. ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2017, 135 (11) :1170-1176
[9]  
Chan GCY, 2017, IEEE I C SIGNAL IMAG, P493, DOI 10.1109/ICSIPA.2017.8120662
[10]  
El Kholy M, 2021, INT J ADV COMPUT SC, V12, P233