Cellular fault prediction of graphical representation based on spatio-temporal graph convolutional networks

被引:0
|
作者
Qian, Bing [1 ]
Xie, Hanlei [1 ]
Wu, Wei [2 ]
Yang, Yan [2 ]
机构
[1] China Telecom Corp Ltd, AI R & D Ctr, Beijing Res Inst, Beijing, Peoples R China
[2] China Telecommun Corp Ltd, Beijing, Peoples R China
关键词
Cellular network; Graphical representation; Graphical model; Fault causal dependency;
D O I
10.1016/j.comcom.2023.10.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of the 5th generation (5G) networks and the massive amount of data, the operation and maintenance (O&M) mindset needs to change from "post-maintenance"to "pre-prevention". In the wireless network, the fault has propagation and causality, and a fault in the current timestamp is also one of the factors that affect whether a fault occurs in the subsequent timestamp. Existing fault prediction methods study the time dependencies and inter-measure dependencies of key performance indicators (KPIs) while ignoring the important causal dependencies of faults in cellular networks. Therefore, it is still challenging to study the fault causal dependency in cellular networks. To tackle the above problems, we propose a novel framework for wireless cell fault prediction to deal with the problem of causal dependency. First, we build an undirected graph based on KPIs and fault-related knowledge collected from the base station through graphical representation. Second, we introduce the graphical model to learn the dependency relationship containing different KPIs at synchronous timestamps and the causal relationship between fault codes at asynchronous timestamps. Finally, we employed the attention mechanism of the graphical model to further strengthen the correlation between parameters during the training process. We conduct extensive prediction experiments on fault events (whether a fault occurs) and fault code (which type of fault occurs) tasks on fault datasets of real wireless cells. Experimental results show that our framing method is state-of-the-art and achieves higher accuracy than traditional fault prediction methods.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 50 条
  • [41] Spatio-Temporal Action Graph Networks
    Herzig, Roei
    Levi, Elad
    Xu, Huijuan
    Gao, Hang
    Brosh, Eli
    Wang, Xiaolong
    Globerson, Amir
    Darrell, Trevor
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2347 - 2356
  • [42] Predicting task bottlenecks in digital manufacturing enterprises based on spatio-temporal graph convolutional networks
    Yin, Jun
    Ma, Rutao
    Ge, Shilun
    FRONTIERS OF ENGINEERING MANAGEMENT, 2025,
  • [43] Irregular Traffic Time Series Forecasting Based on Asynchronous Spatio-Temporal Graph Convolutional Networks
    Zhang, Weijia
    Zhang, Le
    Han, Jindong
    Liu, Hao
    Fu, Yanjie
    Zhou, Jingbo
    Mei, Yu
    Xiong, Hui
    PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, : 4302 - 4313
  • [44] Robust Traffic Prediction Using Probabilistic Spatio-Temporal Graph Convolutional Network
    Karim, Atkia Akila
    Nower, Naushin
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 259 - 273
  • [45] Dynamic Spatio-Temporal Graph Fusion Convolutional Network for Urban Traffic Prediction
    Ma, Haodong
    Qin, Xizhong
    Jia, Yuan
    Zhou, Junwei
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [46] A novel dynamic spatio-temporal graph convolutional network for windspeed interval prediction
    Chen, Zhengganzhe
    Zhang, Bin
    Du, Chenglong
    Meng, Wei
    Meng, Anbo
    ENERGY, 2024, 294
  • [47] Bayesian Spatio-Temporal Graph Convolutional Network for Railway Train Delay Prediction
    Li, Jianmin
    Xu, Xinyue
    Ding, Xin
    Liu, Jun
    Ran, Bin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 8193 - 8208
  • [48] Spatio-Temporal Crime Prediction with Temporally Hierarchical Convolutional Neural Networks
    Ilhan, Fatih
    Tekin, Selim F.
    Aksoy, Bilgin
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [49] STOG: A Traffic Prediction Scheme Based on Spatio-Temporal Optimized Graph Neural Networks
    Hu, Shuting
    Yu, Ze
    Zhou, Danyang
    Zhou, Yi
    Cheng, Nan
    Lu, Ning
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [50] Traffic Flow Prediction Based on Federated Learning and Spatio-Temporal Graph Neural Networks
    Feng, Jian
    Du, Cailing
    Mu, Qi
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (06)