Exploring Homomorphic Encryption and Differential Privacy Techniques towards Secure Federated Learning Paradigm

被引:23
作者
Aziz, Rezak [1 ]
Banerjee, Soumya [1 ]
Bouzefrane, Samia [1 ]
Vinh, Thinh Le [2 ]
机构
[1] Cnam, CEDRIC Lab, 292 Rue St Martin, F-75003 Paris, France
[2] Ho Chi Minh City Univ Technol & Educ, Fac Informat Technol, Ho Chi Minh City, Vietnam
关键词
federated learning; differential privacy; homomorphic encryption; privacy; accuracy; CHALLENGES;
D O I
10.3390/fi15090310
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The trend of the next generation of the internet has already been scrutinized by top analytics enterprises. According to Gartner investigations, it is predicted that, by 2024, 75% of the global population will have their personal data covered under privacy regulations. This alarming statistic necessitates the orchestration of several security components to address the enormous challenges posed by federated and distributed learning environments. Federated learning (FL) is a promising technique that allows multiple parties to collaboratively train a model without sharing their data. However, even though FL is seen as a privacy-preserving distributed machine learning method, recent works have demonstrated that FL is vulnerable to some privacy attacks. Homomorphic encryption (HE) and differential privacy (DP) are two promising techniques that can be used to address these privacy concerns. HE allows secure computations on encrypted data, while DP provides strong privacy guarantees by adding noise to the data. This paper first presents consistent attacks on privacy in federated learning and then provides an overview of HE and DP techniques for secure federated learning in next-generation internet applications. It discusses the strengths and weaknesses of these techniques in different settings as described in the literature, with a particular focus on the trade-off between privacy and convergence, as well as the computation overheads involved. The objective of this paper is to analyze the challenges associated with each technique and identify potential opportunities and solutions for designing a more robust, privacy-preserving federated learning framework.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Combining homomorphic encryption and differential privacy in federated learning
    Sebert, Arnaud Grivet
    Checri, Marina
    Stan, Oana
    Sirdey, Renaud
    Gouy-Pailler, Cedric
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 145 - 151
  • [2] Secure Federated Learning Scheme Based on Differential Privacy and Homomorphic Encryption
    Zhang, Xuyan
    Huang, Da
    Tang, Yuhua
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14879 : 435 - 446
  • [3] Privacy Preserving Federated Learning: A Novel Approach for Combining Differential Privacy and Homomorphic Encryption
    Aziz, Rezak
    Banerjee, Soumya
    Bouzefrane, Samia
    INFORMATION SECURITY THEORY AND PRACTICE, WISTP 2024, 2024, 14625 : 162 - 177
  • [4] Privacy Preservation using Federated Learning and Homomorphic Encryption: A Study
    Ajay, D. M.
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 451 - 458
  • [5] ADPHE-FL: Federated learning method based on adaptive differential privacy and homomorphic encryption
    Wu, Tao
    Deng, Yulin
    Zhou, Qizhao
    Chen, Xi
    Zhang, Ming
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2025, 18 (03)
  • [6] Masking and Homomorphic Encryption-Combined Secure Aggregation for Privacy-Preserving Federated Learning
    Park, Soyoung
    Lee, Junyoung
    Harada, Kaho
    Chi, Jeonghee
    ELECTRONICS, 2025, 14 (01):
  • [7] Privacy Preserving Federated Learning Using CKKS Homomorphic Encryption
    Qiu, Fengyuan
    Yang, Hao
    Zhou, Lu
    Ma, Chuan
    Fang, LiMing
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT I, 2022, 13471 : 427 - 440
  • [8] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [9] Secure Neuroimaging Analysis using Federated Learning with Homomorphic Encryption
    Stripelis, Dimitris
    Saleem, Hamza
    Ghai, Tanmay
    Dhinagar, Nikhil J.
    Gupta, Umang
    Anastasiou, Chrysovalantis
    Ver Steeg, Greg
    Ravi, Srivatsan
    Naveed, Muhammad
    Thompson, Paul M.
    Ambite, Jose Luis
    17TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2021, 12088
  • [10] FLCrypt - Secure Federated Learning for Audio Event Classification using Homomorphic Encryption
    Fuhrmeister, Kay
    Cui, Hao
    Yaroshchuk, Artem
    Koellmer, Thomas
    2024 IEEE 5TH INTERNATIONAL SYMPOSIUM ON THE INTERNET OF SOUNDS, IS2 2024, 2024, : 57 - 63