Edge Intelligence for Detecting Deviations in Batch-based Industrial Processes

被引:1
作者
Keusch, Alexander [1 ,2 ]
Hiessl, Thomas [1 ]
Joksch, Martin [1 ]
Suendermann, Axel [1 ]
Schall, Daniel [1 ]
Schulte, Stefan [3 ]
机构
[1] Siemens Technol, Vienna, Austria
[2] Vienna Univ Technol, Vienna, Austria
[3] TU Hamburg, Christian Doppler Lab Blockchain Technol Internet, Hamburg, Germany
来源
2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN | 2023年
关键词
edge intelligence; industrial IoT; batch-based processes; process monitoring;
D O I
10.1109/INDIN51400.2023.10217845
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Monitoring of batch production processes is complex and existing solutions do not offer good performance in providing real-time feedback about the state of the process. Therefore, we introduce an AI system that monitors a fermentation process and detects deviations from the normal process execution directly on the edge and provides real-time feedback to the operator, allowing intervention before the process gets out of control. We analyze the accuracy of the novel AI-based approach by carrying out several experiments and compare the outcome with statistical methods as a baseline. The experiments show that the AI-based approach performs significantly better at detecting anomalies in a fermentation process than the statistical methods.
引用
收藏
页数:8
相关论文
共 15 条
  • [1] A novel unsupervised approach for batch process monitoring using deep learning
    Agarwal, Piyush
    Aghaee, Mohammad
    Tamer, Melih
    Budman, Hector
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2022, 159
  • [2] Multivariate batch to batch optimisation of fermentation processes to improve productivity
    Barton, Maxwell
    Duran-Villalobos, Carlos A.
    Lennox, Barry
    [J]. JOURNAL OF PROCESS CONTROL, 2021, 108 : 148 - 156
  • [3] A multivariate process monitoring strategy and control concept for a small-scale fermenter in a PAT environment
    Besenhard, Maximilian O.
    Scheibelhofer, Otto
    Francois, Kjell
    Joksch, Martin
    Kavsek, Barbara
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (07) : 1501 - 1514
  • [4] An Overview on Edge Computing Research
    Cao, Keyan
    Liu, Yefan
    Meng, Gongjie
    Sun, Qimeng
    [J]. IEEE ACCESS, 2020, 8 : 85714 - 85728
  • [5] Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence
    Deng, Shuiguang
    Zhao, Hailiang
    Fang, Weijia
    Yin, Jianwei
    Dustdar, Schahram
    Zomaya, Albert Y.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08) : 7457 - 7469
  • [6] Jolliffe I, 2002, Principal Component Analysis
  • [7] PROCESS ANALYSIS, MONITORING AND DIAGNOSIS, USING MULTIVARIATE PROJECTION METHODS
    KOURTI, T
    MACGREGOR, JF
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1995, 28 (01) : 3 - 21
  • [8] NONLINEAR PRINCIPAL COMPONENT ANALYSIS USING AUTOASSOCIATIVE NEURAL NETWORKS
    KRAMER, MA
    [J]. AICHE JOURNAL, 1991, 37 (02) : 233 - 243
  • [9] MONITORING BATCH PROCESSES USING MULTIWAY PRINCIPAL COMPONENT ANALYSIS
    NOMIKOS, P
    MACGREGOR, JF
    [J]. AICHE JOURNAL, 1994, 40 (08) : 1361 - 1375
  • [10] Adaptive batch monitoring using hierarchical PCA
    Rannar, S
    MacGregor, JF
    Wold, S
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 41 (01) : 73 - 81