Roughness-induced effects on the thermomicropolar fluid flow through a thin domain

被引:2
作者
Pazanin, Igor [1 ]
Suarez-Grau, Francisco J. [2 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Zagreb, Croatia
[2] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, Seville, Spain
关键词
cooling condition; homogenization; rough boundary; thermomicropolar fluid; thin domain; ASYMPTOTIC-BEHAVIOR; MICROPOLAR FLUIDS; BOUNDARY; HEAT; SURFACE;
D O I
10.1111/sapm.12611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic behavior of the thermomicropolar fluid flow through a thin channel with rough boundary. The flow is governed by the prescribed pressure drop between the channel's ends and the heat exchange through the rough wall is allowed. Depending on the limit of the ratio between channel's thickness and the wavelength of the roughness, we rigorously derive different asymptotic models clearly showing the roughness-induced effects on the average velocity and microrotation. To accomplish that, we employ the adaptation of the unfolding method to a thin-domain setting.
引用
收藏
页码:716 / 751
页数:36
相关论文
共 36 条
[1]   Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary [J].
Anguiano, Maria ;
Javier Suarez-Grau, Francisco .
IMA JOURNAL OF APPLIED MATHEMATICS, 2019, 84 (01) :63-95
[2]   NEWTONIAN FLUID FLOW IN A THIN POROUS MEDIUM WITH NON-HOMOGENEOUS SLIP BOUNDARY CONDITIONS [J].
Anguiano, Maria ;
Javier Suarez-Grau, Francisco .
NETWORKS AND HETEROGENEOUS MEDIA, 2019, 14 (02) :289-316
[3]   Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure [J].
Anguiano, Maria ;
Javier Suarez-Grau, Francisco .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02)
[4]   Homogenization of an incompressible non-Newtonian flow through a thin porous medium [J].
Anguiano, Maria ;
Javier Suarez-Grau, Francisco .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02)
[5]   HOMOGENIZATION OF THE STOKES SYSTEM IN A THIN-FILM FLOW WITH RAPIDLY VARYING THICKNESS [J].
BAYADA, G ;
CHAMBAT, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (02) :205-234
[6]   Rigorous derivation of the asymptotic model describing a nonsteady micropolar fluid flow through a thin pipe [J].
Benes, Michal ;
Pazanin, Igor ;
Radulovic, Marko .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (09) :2035-2060
[7]   A GENERALIZED REYNOLDS EQUATION FOR MICROPOLAR FLOWS PAST A RIBBED SURFACE WITH NONZERO BOUNDARY CONDITIONS [J].
BONNIVARD, M. A. T. T. H. I. E. U. ;
PAZANIN, I. G. O. R. ;
SUAREZ-GRAU, F. R. A. N. C. I. S. C. O. J. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (04) :1255-1305
[8]   Effects of rough boundary and nonzero boundary conditions on the lubrication process with micropolar fluid [J].
Bonnivard, Matthieu ;
Pazanin, Igor ;
Javier Suarez-Grau, Francisco .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2018, 72 :501-518
[9]   ASYMPTOTIC BEHAVIOR OF THE NAVIER-STOKES SYSTEM IN A THIN DOMAIN WITH NAVIER CONDITION ON A SLIGHTLY ROUGH BOUNDARY [J].
Casado-Diaz, J. ;
Luna-Laynez, M. ;
Suarez-Grau, F. J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) :1641-1674
[10]   A DECOMPOSITION RESULT FOR THE PRESSURE OF A FLUID IN A THIN DOMAIN AND EXTENSIONS TO ELASTICITY PROBLEMS [J].
Casado-Diaz, Juan ;
Luna-Laynez, Manuel ;
Suarez-Grau, Francisco J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) :2201-2236