Sensitivity Analysis of the Maximal Value Function with Applications in Nonconvex Minimax Programs

被引:5
作者
Guo, Lei [1 ]
Ye, Jane J. [2 ]
Zhang, Jin [3 ]
机构
[1] East China Univ Sci & Technol, Sch Business, Shanghai 200237, Peoples R China
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
[3] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Natl Ctr Appl Math Shenzhen, Dept Math,Peng Cheng Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 上海市自然科学基金;
关键词
sensitivity analysis; value function; Wolfe duality; nonconvex minimax problem; non-Lipschitz continuity; necessary optimality; PARAMETRIC MATHEMATICAL PROGRAMS; KUHN-TUCKER CONDITION; OPTIMALITY CONDITIONS; CONSTRAINTS; PSEUDONORMALITY; STABILITY;
D O I
10.1287/moor.2023.1366
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we perform a sensitivity analysis for the maximal value function, which is the optimal value function for a parametric maximization problem. Our aim is to study various subdifferentials for the maximal value function. We obtain upper estimates of Fre ' chet, limiting, and horizon subdifferentials of the maximal value function by using some sensitivity analysis techniques sophisticatedly. The derived upper estimates depend only on the union of all solutions and not on its convex hull or only one solution from the solution set. Finally, we apply the derived results to develop some new necessary optimality conditions for nonconvex minimax problems. In the nonconvex-concave setting, our Wolfe duality approach compares favorably with the first-order approach in that the necessary condition is sharper and the constraint qualification is weaker.
引用
收藏
页码:536 / 556
页数:22
相关论文
共 52 条
[1]   A relaxed constant positive linear dependence constraint qualification and applications [J].
Andreani, Roberto ;
Haeser, Gabriel ;
Laura Schuverdt, Maria ;
Silva, Paulo J. S. .
MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) :255-273
[2]  
[Anonymous], 2013, Perturbation Analysis of Optimization Problems
[3]   Pseudonormality and a Lagrange multiplier theory for constrained optimization [J].
Bertsekas, DP ;
Ozdaglar, AE .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 114 (02) :287-343
[4]  
Clarke F. H., 1983, Optimization and nonsmooth analysis
[5]   Optimality Conditions for Constrained Minimax Optimization [J].
Dai, Yu-Hong ;
Zhang, Liwei .
CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2020, 1 (02) :296-315
[6]   Is bilevel programming a special case of a mathematical program with complementarity constraints? [J].
Dempe, S. ;
Dutta, J. .
MATHEMATICAL PROGRAMMING, 2012, 131 (1-2) :37-48
[7]  
Fiacco A. V., 1990, Annals of Operations Research, V27, P215, DOI 10.1007/BF02055196
[8]   CONVEXITY AND CONCAVITY PROPERTIES OF THE OPTIMAL VALUE FUNCTION IN PARAMETRIC NONLINEAR-PROGRAMMING [J].
FIACCO, AV ;
KYPARISIS, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1986, 48 (01) :95-126
[9]  
GAUVIN J, 1982, MATH PROGRAM STUD, V19, P101, DOI 10.1007/BFb0120984
[10]  
Gauvin J., 1979, Mathematics of Operations Research, V4, P458, DOI 10.1287/moor.4.4.458