Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics

被引:10
作者
Arzamasov, Aleksandr A. [1 ]
Osterman, Andrei L. [1 ,2 ]
机构
[1] Sanford Burnham Prebys Med Discovery Inst, Infect & Inflammatory Dis Ctr, La Jolla, CA USA
[2] Sanford Burnham Prebys Med Discovery Inst, Infect & Inflammatory Dis Ctr, 10901 N Torrey Pines Rd, La Jolla, CA 92037 USA
关键词
Bifidobacteria; HMO; N-glycans; carbohydrate metabolism; comparative genomics; transcriptional regulation; probiotics; prebiotics; LONGUM SUBSP INFANTIS; GLYCOSIDE HYDROLASE FAMILY; LACTO-N-BIOSE; HUMAN GUT MICROBIOME; ACETYL-D-GLUCOSAMINE; LELOIR PATHWAY; ATCC; 15697; BETA-GALACTOSIDASES; LACTOBACILLUS-CASEI; MOLECULAR-CLONING;
D O I
10.1080/10409238.2023.2182272
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain Bifidobacterium species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and N-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and N-glycan assimilation abilities vary remarkably within the Bifidobacterium genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.
引用
收藏
页码:562 / 584
页数:23
相关论文
共 183 条
[1]   Microbiota Supplementation with Bifidobacterium and Lactobacillus Modifies the Preterm Infant Gut Microbiota and Metabolome: An Observational Study [J].
Alcon-Giner, Cristina ;
Dalby, Matthew J. ;
Caim, Shabhonam ;
Ketskemety, Jennifer ;
Shaw, Alex ;
Sim, Kathleen ;
Lawson, Melissa A. E. ;
Kiu, Raymond ;
Leclaire, Charlotte ;
Chalklen, Lisa ;
Kujawska, Magdalena ;
Mitra, Suparna ;
Fardus-Reid, Fahmina ;
Belteki, Gustav ;
McColl, Katherine ;
Swann, Jonathan R. ;
Kroll, J. Simon ;
Clarke, Paul ;
Hall, Lindsay J. .
CELL REPORTS MEDICINE, 2020, 1 (05)
[2]   B Vitamins in Breast Milk: Relative Importance of Maternal Status and Intake, and Effects on Infant Status and Function [J].
Allen, Lindsay H. .
ADVANCES IN NUTRITION, 2012, 3 (03) :362-369
[3]   Characterization of GH2 and GH42-galactosidases derived from bifidobacterial infant isolates [J].
Ambrogi, Valentina ;
Bottacini, Francesca ;
O'Sullivan, Joyce ;
Motherway, Mary O'Connell ;
Cao Linqiu ;
Schoemaker, Barry ;
Schoterman, Margriet ;
van Sinderen, Douwe .
AMB EXPRESS, 2019, 9 (1)
[4]   Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR [J].
Arzamasov, Aleksandr A. ;
Nakajima, Aruto ;
Sakanaka, Mikiyasu ;
Ojima, Miriam N. ;
Katayama, Takane ;
Rodionov, Dmitry A. ;
Osterman, Andrei L. .
MSYSTEMS, 2022, 7 (05)
[5]   Comparative Genomics Reveals the Regulatory Complexity of Bifidobacterial Arabinose and Arabino-Oligosaccharide Utilization [J].
Arzamasov, Aleksandr A. ;
van Sinderen, Douwe ;
Rodionov, Dmitry A. .
FRONTIERS IN MICROBIOLOGY, 2018, 9
[6]   Physiology of Consumption of Human Milk Oligosaccharides by Infant Gut-associated Bifidobacteria [J].
Asakuma, Sadaki ;
Hatakeyama, Emi ;
Urashima, Tadasu ;
Yoshida, Erina ;
Katayama, Takane ;
Yamamoto, Kenji ;
Kumagai, Hidehiko ;
Ashida, Hisashi ;
Hirose, Junko ;
Kitaoka, Motomitsu .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (40) :34583-34592
[7]   Characterization of two different endo-α-N-acetylgalactosaminidases from probiotic and pathogenic enterobacteria, Bifidobacterium longum and Clostridium perfringens [J].
Ashida, Hisashi ;
Maki, Riichi ;
Ozawa, Hayato ;
Tani, Yasushi ;
Kiyohara, Masashi ;
Fujita, Masaya ;
Imamura, Akihiro ;
Ishida, Hideharu ;
Kiso, Makoto ;
Yamamoto, Kenji .
GLYCOBIOLOGY, 2008, 18 (09) :727-734
[8]   1,6-α-L-Fucosidases from Bifidobacterium longum subsp. infantis ATCC 15697 Involved in the Degradation of Core-fucosylated N-Glycan [J].
Ashida, Hisashi ;
Fujimoto, Taku ;
Kurihara, Shin ;
Nakamura, Masayuki ;
Komeno, Masahiro ;
Huang, Yibo ;
Katayama, Takane ;
Kinoshita, Takashi ;
Takegawa, Kaoru .
JOURNAL OF APPLIED GLYCOSCIENCE, 2020, 67 (01) :23-29
[9]   Bifunctional properties and characterization of a novel sialidase with esterase activity from Bifidobacterium bifidum [J].
Ashida, Hisashi ;
Tanigawa, Kana ;
Kiyohara, Masashi ;
Katoh, Toshihiko ;
Katayama, Takane ;
Yamamoto, Kenji .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2018, 82 (11) :2030-2039
[10]   Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates [J].
Ashida, Hisashi ;
Miyake, Akiko ;
Kiyohara, Masashi ;
Wada, Jun ;
Yoshida, Erina ;
Kumagai, Hidehiko ;
Katayama, Takane ;
Yamamoto, Kenji .
GLYCOBIOLOGY, 2009, 19 (09) :1010-1017