Existence of solution for a class of activator-inhibitor systems

被引:0
作者
Figueiredo, Giovany [1 ]
Montenegro, Marcelo [2 ]
机构
[1] Univ Brasilia, Dept Matemat, Campus Darcy Ribeiro 01, Brasilia, DF, Brazil
[2] Univ Estadual Campinas, Dept Matemat, IMECC, Rua Sergio Buarque Holanda 651, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
SCALAR FIELD-EQUATIONS; FITZHUGH-NAGUMO EQUATIONS; STANDING WAVES;
D O I
10.1017/S0017089522000131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a solution for a class of activator-inhibitor system of type -Delta u + u=f(u)- v, -Delta v + v = u in R-N. The function f is a general nonlinearity which can grow polynomially in dimension N >= 3 or exponentiallly if N = 2. We are able to treat f when it has critical growth corresponding to the Sobolev space we work with. We transform the system into an equation with a nonlocal term. We find a critical point of the corresponding energy functional defined in the space of functions with norm endowed by a scalar product that takes into account such nonlocal term. For that matter, and due to the lack of compactness, we deal with weak convergent minimizing sequences and sequences of Lagrange multipliers of an action minima problem.
引用
收藏
页码:98 / 113
页数:16
相关论文
共 38 条
[1]   Existence of a ground state solution for a nonlinear scalar field equation with critical growth [J].
Alves, Claudianor O. ;
Souto, Marco A. S. ;
Montenegro, Marcelo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) :537-554
[2]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   Multiple critical points for a class of nonlinear functionals [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (03) :507-523
[5]  
BAERNSTEIN A, 1994, SYM MATH, V35, P47
[6]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[7]   CRITICAL-POINT THEOREMS FOR INDEFINITE FUNCTIONALS [J].
BENCI, V ;
RABINOWITZ, PH .
INVENTIONES MATHEMATICAE, 1979, 52 (03) :241-273
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]   LOCAL METHOD FOR THE EXISTENCE OF POSITIVE SOLUTIONS TO ELLIPTIC SEMI-LINEAR PROBLEMS IN R-N [J].
BERESTYCKI, H ;
LIONS, PL .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 38 :144-187
[10]  
BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307