Blood-based Transcriptomic and Proteomic Biomarkers of Emphysema

被引:10
作者
Suryadevara, Rahul [1 ]
Gregory, Andrew [1 ]
Lu, Robin [1 ]
Xu, Zhonghui [1 ]
Masoomi, Aria [4 ]
Lutz, Sharon M. [5 ]
Berman, Seth [1 ]
Yun, Jeong H. [1 ,2 ]
Saferali, Aabida [1 ]
Ryu, Min Hyung
Moll, Matthew [1 ,2 ,6 ]
Sin, Don D. [7 ,8 ]
Hersh, Craig P. [1 ,2 ]
Silverman, Edwin K. [1 ,2 ]
Dy, Jennifer [4 ]
Pratte, Katherine A. [9 ]
Bowler, Russell P. [10 ]
Castaldi, Peter J. [1 ,3 ]
Boueiz, Adel [1 ,2 ]
机构
[1] Harvard Med Sch, Channing Div Network Med, Brigham & Womens Hosp, Boston, MA USA
[2] Harvard Med Sch, Brigham andWomens Hosp, Div Pulm & Crit Care Med, Boston, MA USA
[3] Harvard Med Sch, Div Gen Med & Primary Care, Boston, MA USA
[4] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA USA
[5] Harvard PilgrimHlth Care Inst, Dept Populat Med, Boston, MA USA
[6] Vet Affairs Boston Healthcare Syst, Pulm Crit Care Allergy & Sleep Med Sect, West Roxbury, MA USA
[7] St Pauls Hosp, Ctr Heart Lung Innovat, Vancouver, BC, Canada
[8] Univ British Columbia, Resp Div, Dept Med, Vancouver, BC, Canada
[9] Natl Jewish Hlth, Dept Biostat, Denver, CO USA
[10] Natl Jewish Hlth, Div Pulm Crit Care & Sleep Med, Denver, CO USA
关键词
emphysema; biomarkers; transcriptomics; proteomics; prediction; OBSTRUCTIVE PULMONARY-DISEASE; AIR-FLOW OBSTRUCTION; GENE-EXPRESSION; COPD; SMOKERS; IDENTIFICATION; EPIDEMIOLOGY; ASSOCIATION; SUBTYPES;
D O I
10.1164/rccm.202301-0067OC
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Rationale: Emphysema is a chronic obstructive pulmonary disease phenotype with important prognostic implications. Identifying blood-based biomarkers of emphysema will facilitate early diagnosis and development of targeted therapies. Objectives: To discover blood omics biomarkers for chest computed tomography-quantified emphysema and develop predictive biomarker panels. Methods: Emphysema blood biomarker discovery was performed using differential gene expression, alternative splicing, and protein association analyses in a training sample of 2,370 COPDGene participants with available blood RNA sequencing, plasma proteomics, and clinical data. Internal validation was conducted in a COPDGene testing sample (n = 1,016), and external validation was done in the ECLIPSE study (n = 526). Because low body mass index (BMI) and emphysema often co-occur, we performed a mediation analysis to quantify the effect of BMI on gene and protein associations with emphysema. Elastic net models with bootstrapping were also developed in the training sample sequentially using clinical, blood cell proportions, RNA-sequencing, and proteomic biomarkers to predict quantitative emphysema. Model accuracy was assessed by the area under the receiver operating characteristic curves for subjects stratified into tertiles of emphysema severity. Measurements and Main Results: Totals of 3,829 genes, 942 isoforms, 260 exons, and 714 proteins were significantly associated with emphysema (false discovery rate, 5%) and yielded 11 biological pathways. Seventy-four percent of these genes and 62% of these proteins showed mediation by BMI. Our prediction models demonstrated reasonable predictive performance in both COPDGene and ECLIPSE. The highest-performing model used clinical, blood cell, and protein data (area under the receiver operating characteristic curve in COPDGene testing, 0.90; 95% confidence interval, 0.85-0.90). Conclusions: Blood transcriptome and proteome-wide analyses revealed key biological pathways of emphysema and enhanced the prediction of emphysema.
引用
收藏
页码:273 / 287
页数:15
相关论文
共 74 条
[11]   The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease [J].
Celli, BR ;
Cote, CG ;
Marin, JM ;
Casanova, C ;
de Oca, MM ;
Mendez, RA ;
Pinto Plata, V ;
Cabral, HJ .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (10) :1005-1012
[12]   Role of BMPR2 Alternative Splicing in Heritable Pulmonary Arterial Hypertension Penetrance [J].
Cogan, Joy ;
Austin, Eric ;
Hedges, Lora ;
Womack, Bethany ;
West, James ;
Loyd, James ;
Hamid, Rizwan .
CIRCULATION, 2012, 126 (15) :1907-U307
[13]   Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD [J].
Cruickshank-Quinn, Charmion I. ;
Jacobson, Sean ;
Hughes, Grant ;
Powell, Roger L. ;
Petrache, Irina ;
Kechris, Katerina ;
Bowler, Russell ;
Reisdorph, Nichole .
SCIENTIFIC REPORTS, 2018, 8
[14]   Detecting Splicing Variants in Idiopathic Pulmonary Fibrosis from Non-Differentially Expressed Genes [J].
Deng, Nan ;
Sanchez, Cecilia G. ;
Lasky, Joseph A. ;
Zhu, Dongxiao .
PLOS ONE, 2013, 8 (07)
[15]   AGER expression and alternative splicing in bronchial biopsies of smokers and never smokers [J].
Faiz, Alen ;
van den Berge, Maarten ;
Vermeulen, Cornelis J. ;
ten Hacken, Nick H. T. ;
Guryev, Victor ;
Pouwels, Simon D. .
RESPIRATORY RESEARCH, 2019, 20 (1)
[16]   Network Analysis of Lung Transcriptomics Reveals a Distinct B-Cell Signature in Emphysema [J].
Faner, Rosa ;
Cruz, Tamara ;
Casserras, Teresa ;
Lopez-Giraldo, Alejandra ;
Noell, Guillaume ;
Coca, Ignacio ;
Tal-Singer, Ruth ;
Miller, Bruce ;
Rodriguez-Roisin, Roberto ;
Spira, Avrum ;
Kalko, Susana G. ;
Agusti, Alvar .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193 (11) :1242-1253
[17]   Lessons from ECLIPSE: a review of COPD biomarkers [J].
Faner, Rosa ;
Tal-Singer, Ruth ;
Riley, John H. ;
Celli, Bartolome ;
Vestbo, Jorgen ;
MacNee, William ;
Bakke, Per ;
Calverley, Peter M. A. ;
Coxson, Harvey ;
Crim, Courtney ;
Edwards, Lisa D. ;
Locantore, Nick ;
Lomas, David A. ;
Miller, Bruce E. ;
Rennard, Stephen I. ;
Wouters, Emiel F. M. ;
Yates, Julie C. ;
Silverman, Edwin K. ;
Agusti, Alvar .
THORAX, 2014, 69 (07) :666-672
[18]   GENCODE reference annotation for the human and mouse genomes [J].
Frankish, Adam ;
Diekhans, Mark ;
Ferreira, Anne-Maud ;
Johnson, Rory ;
Jungreis, Irwin ;
Loveland, Jane ;
Mudge, Jonathan M. ;
Sisu, Cristina ;
Wright, James ;
Armstrong, Joel ;
Barnes, If ;
Berry, Andrew ;
Bignell, Alexandra ;
Sala, Silvia Carbonell ;
Chrast, Jacqueline ;
Cunningham, Fiona ;
Di Domenico, Tomas ;
Donaldson, Sarah ;
Fiddes, Ian T. ;
Giron, Carlos Garcia ;
Gonzalez, Jose Manuel ;
Grego, Tiago ;
Hardy, Matthew ;
Hourlier, Thibaut ;
Hunt, Toby ;
Izuogu, Osagie G. ;
Lagarde, Julien ;
Martin, Fergal J. ;
Martinez, Laura ;
Mohanan, Shamika ;
Muir, Paul ;
Navarro, Fabio C. P. ;
Parker, Anne ;
Pei, Baikang ;
Pozo, Fernando ;
Ruffier, Magali ;
Schmitt, Bianca M. ;
Stapleton, Eloise ;
Suner, Marie-Marthe ;
Sycheva, Irina ;
Uszczynska-Ratajczak, Barbara ;
Xu, Jinuri ;
Yates, Andrew ;
Zerbino, Daniel ;
Zhang, Yan ;
Aken, Bronwen ;
Choudhary, Jyoti S. ;
Gerstein, Mark ;
Guigo, Roderic ;
Hubbard, Tim J. P. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D766-D773
[19]   dearseq: a variance component score test for RNA-seq differential analysis that effectively controls the false discovery rate [J].
Gauthier, Marine ;
Agniel, Denis ;
Thiebaut, Rodolphe ;
Hejblum, Boris P. .
NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (04)
[20]   Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery [J].
Gold, Larry ;
Ayers, Deborah ;
Bertino, Jennifer ;
Bock, Christopher ;
Bock, Ashley ;
Brody, Edward N. ;
Carter, Jeff ;
Dalby, Andrew B. ;
Eaton, Bruce E. ;
Fitzwater, Tim ;
Flather, Dylan ;
Forbes, Ashley ;
Foreman, Trudi ;
Fowler, Cate ;
Gawande, Bharat ;
Goss, Meredith ;
Gunn, Magda ;
Gupta, Shashi ;
Halladay, Dennis ;
Heil, Jim ;
Heilig, Joe ;
Hicke, Brian ;
Husar, Gregory ;
Janjic, Nebojsa ;
Jarvis, Thale ;
Jennings, Susan ;
Katilius, Evaldas ;
Keeney, Tracy R. ;
Kim, Nancy ;
Koch, Tad H. ;
Kraemer, Stephan ;
Kroiss, Luke ;
Le, Ngan ;
Levine, Daniel ;
Lindsey, Wes ;
Lollo, Bridget ;
Mayfield, Wes ;
Mehan, Mike ;
Mehler, Robert ;
Nelson, Sally K. ;
Nelson, Michele ;
Nieuwlandt, Dan ;
Nikrad, Malti ;
Ochsner, Urs ;
Ostroff, Rachel M. ;
Otis, Matt ;
Parker, Thomas ;
Pietrasiewicz, Steve ;
Resnicow, Daniel I. ;
Rohloff, John .
PLOS ONE, 2010, 5 (12)