Fractional Besov spaces and Hardy inequalities on bounded non-smooth domains

被引:0
作者
Cao, Jun [1 ]
Jin, Yongyang [1 ]
Yu, Zhuonan [1 ]
Zhang, Qishun [1 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov space; Hardy inequality; Non-smooth domain; Extension operator; Interpolation; TRIEBEL-LIZORKIN SPACES; EXTENSION;
D O I
10.1007/s10231-024-01430-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded non-smooth domain in R-n that satisfies the measure density condition. In this paper, the authors study the interrelations of three basic types of Besov spaces B-p,q(s) (Omega), (B)(p,q)(s) (Omega)and B-p,q(s )(Omega) on Omega, which are defined, respectively, via the restriction, completion and supporting conditions with p,q is an element of [1,infinity) and s is an element of (0,1). The authors prove that B-p,q(s) (Omega) = (B)(p,q)(s) (Omega)= B-p,q(s) (Omega), if Omega supports a fractional Besov-Hardy inequality, where the latter is proved under certain conditions on fractional Besov capacity or Aikawa's dimension of the boundary of Omega.
引用
收藏
页码:1951 / 1977
页数:27
相关论文
共 36 条
[1]  
Adams R., 1989, CLASSIFICATION PROBL, P9
[2]  
Adams R.A., 2003, Pure and Applied Mathematics, V140
[3]   A measure characterization of embedding and extension domains for Sobolev, Triebel-Lizorkin, and Besov spaces on spaces of homogeneous type [J].
Alvarado, Ryan ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (12)
[4]  
Bennett C., 1988, Interpolation of Operators
[5]  
Bergh J., 1976, INTERPOLATION SPACES, DOI [DOI 10.1007/978-3-642-66451-9, 10.1007/978-3-642-66451-9]
[6]  
BESOV OV, 1959, DOKL AKAD NAUK SSSR+, V126, P1163
[7]  
BESOV OV, 1961, T MAT I STEKLOVA, V60, P42
[8]   Approximation by functions of compact support in Besov-Triebel-Lizorkin spaces on irregular domains [J].
Caetano, AM .
STUDIA MATHEMATICA, 2000, 142 (01) :47-63
[9]  
CALDERON AP, 1961, P S PURE MATH, V4, P33
[10]   Hardy Inequalities and Interrelations of Fractional Triebel-Lizorkin Spaces in a Bounded Uniform Domain [J].
Cao, Jun ;
Jin, Yongyang ;
Li, Yuanyuan ;
Zhang, Qishun .
MATHEMATICS, 2022, 10 (04)