A multi-core fiber coupler without a central core

被引:3
作者
Meng, Lingzhi [1 ]
Yuan, Libo [2 ]
机构
[1] Harbin Engn Univ, Coll Phys & Optoelect Engn, Key Lab Infiber Integrated Opt, Minist Educ, Harbin 150001, Peoples R China
[2] Guilin Univ Elect Technol, Photon Res Ctr, Sch Optoelect Engn, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Digital holographic tomography; coupler; multi -core fiber; thermal diffusion; THERMAL-DIFFUSION; FLUORINE; GRATINGS;
D O I
10.1016/j.optlastec.2024.110582
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An efficient method for fabricating multi -core fiber couplers based on the thermal diffusion technique is proposed to realize the connection of single -mode fibers to multi -core fibers without a central core. The fabrication efficiency of the multi -core fiber coupler is improved by fiber -loaded hydrogen. The simulation results show that the single -mode fiber and the multi -core fiber can be coupled stably and efficiently by using the designed doubleclad fiber to connect the single -mode fiber and the multi -core fiber. Double -clad fiber and multi -core fiber were loaded with hydrogen to enhance the dopant diffusion rate. Three-dimensional refractive index measurements of the multi -core fiber coupler show that the dopant diffusion rate and the diffusion zone length of the hydrogenloaded fiber are significantly increased compared to the original fiber. These enhancements contributed to the shorter fabrication time of multi -core fiber couplers. The multi -core fiber couplers fabricated by thermal diffusion technology have the advantages of high coupling efficiency, high integration, simple manufacture, and high mechanical strength. Enhancing the diffusion rate of optical fibers by using the hydrogen loading method will increase the application potential of multi -core optical fiber couplers prepared by thermal diffusion technology, and accelerate the translation of multi -core fibers toward optical communication and optical fiber sensing.
引用
收藏
页数:8
相关论文
共 21 条
[1]  
[Anonymous], 2023, Cisco Annual Internet Report-Cisco Annual Internet Report (2018-2023) White Paper-Cisco
[2]   Vernier effect using in-line highly coupled multicore fibers [J].
Cuando-Espitia, Natanael ;
Fuentes-Fuentes, Miguel A. ;
Velazquez-Benitez, Amado ;
Amezcua, Rodrigo ;
Hernandez-Cordero, Juan ;
May-Arrioja, Daniel A. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[3]   Two-axis bend measurement with Bragg gratings in multicore optical fiber [J].
Flockhart, GMH ;
MacPherson, WN ;
Barton, JS ;
Jones, JDC ;
Zhang, L ;
Bennion, I .
OPTICS LETTERS, 2003, 28 (06) :387-389
[4]   Thermal stability of chemical composition gratings in fluorine-germanium-doped silica fibers [J].
Fokine, M .
OPTICS LETTERS, 2002, 27 (12) :1016-1018
[5]   Science and research policy at the end of Moore's law [J].
Khan, Hassan N. ;
Hounshell, David A. ;
Fuchs, Erica R. H. .
NATURE ELECTRONICS, 2018, 1 (01) :14-21
[6]   DIFFUSION BEHAVIOR OF FLUORINE IN SILICA GLASS [J].
KIRCHHOF, J ;
UNGER, S ;
KLEIN, KF ;
KNAPPE, B .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1995, 181 (03) :266-273
[7]   Free-Space Coupling Optics for Multicore Fibers [J].
Klaus, Werner ;
Sakaguchi, Jun ;
Puttnam, Benjamin J. ;
Awaji, Yoshinari ;
Wada, Naoya ;
Kobayashi, Tetsuya ;
Watanabe, Masayuki .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (21) :1902-1905
[8]   Chiral Fibers: Microformed Optical Waveguides for Polarization Control, Sensing, Coupling, Amplification, and Switching [J].
Kopp, Victor I. ;
Park, Jongchul ;
Wlodawski, Mitchell ;
Singer, Jonathan ;
Neugroschl, Dan ;
Genack, Azriel Z. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (04) :605-613
[9]   Reconfigurable structured light generation in a multicore fibre amplifier [J].
Lin, Di ;
Carpenter, Joel ;
Feng, Yutong ;
Jain, Saurabh ;
Jung, Yongmin ;
Feng, Yujun ;
Zervas, Michalis N. ;
Richardson, David J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Thermal Diffusion Technique for In-Fiber Discrete Waveguide Manipulation and Modification: A Tutorial [J].
Meng, Lingzhi ;
Chen, Gongdai ;
Wang, Donghui ;
Yuan, Libo .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (12) :3638-3653