Particle dispersion in the turbulent wake of an Ahmed body: An experimental and computational study

被引:2
|
作者
Mathur, Manish K. [1 ]
Cholemari, Murali R. [1 ]
Veeravalli, S. V. [1 ]
Khare, Mukesh [2 ]
机构
[1] Indian Inst Technol Delhi, Dept Appl Mech, New Delhi 110016, India
[2] Indian Inst Technol Delhi, Dept Civil Engn, New Delhi 110016, India
关键词
Turbulent wake; wind tunnel experiments; particle dispersion; unsteady RANS; Ahmed body; SIMPLIFIED CAR; VORTEX STRUCTURE; FLOW; VEHICLE; PREDICTION; VELOCITY; FIELDS;
D O I
10.1007/s12046-023-02397-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Moving vehicles pick up the particulates/dust on the road surface, and the wake structures behind the vehicle determine the dispersion of these particles. This study aims at understanding the characteristics of particle dispersion in the turbulent wake of a moving vehicle. The flow over a simplified vehicle model known as the Ahmed body is analysed. Experimental measurements and computational simulations of particle dispersion in the near wake of Ahmed body are presented. Unsteady simulations are performed for the prediction of the flow topology and particle dispersion around the Ahmed body, at Rel=0.7x105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_l=0.7\times 10<^>5$$\end{document} (Reynolds no. based on vehicle model length 'l'), the rear slant angle of Ahmed body considered is phi=25o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =25<^>o$$\end{document}. Governing equations solved are unsteady Reynolds Averaged Navier-Stokes (URANS) equations, and the turbulence model employed was SST k-omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-\omega $$\end{document}. Experiments involved the release of fog particles (Ethylene-Glycol, dp approximate to 1 mu m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_p\approx 1\;\upmu m$$\end{document}) from a source behind the model. Dispersion of the particles was measured in the wind tunnel using a laser sheet for fog particle visualisation at three downstream locations, X=1, 2, and 3, at Rel=1.4x105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_l=1.4\times 10<^>5$$\end{document}. It was observed that the flow structure in the near wake of the model consisted of two counter-rotating spanwise vortices and a pair of trailing vortices. URANS simulations capture both the turbulent flow features in the near wake. Experimental results were compared with the URANS simulation results, and it was found that the dominant turbulent structures (recirculation vortices and trailing vortices) in the near wake contribute to particle dispersion. The dispersion patterns obtained are dependent on the size and strength of turbulent structures. The URANS simulations perform reasonably well in capturing the vertical dispersion of particles. However, they do not accurately estimate the lateral dispersion of smoke particles. The lateral dispersion is underestimated by the URANS simulations.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] TURBULENT WAKE OF A BODY OF REVOLUTION
    CHEVRAY, R
    JOURNAL OF BASIC ENGINEERING, 1968, 90 (02): : 275 - &
  • [22] TURBULENT WAKE OF A BODY OF REVOLUTION
    CHEVRAY, R
    MECHANICAL ENGINEERING, 1968, 90 (07) : 73 - &
  • [23] A benchmark for particle-laden turbulent duct flow: A joint computational and experimental study
    Esmaily, M.
    Villafane, L.
    Banko, A. J.
    Iaccarino, G.
    Eaton, J. K.
    Mani, A.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2020, 132
  • [24] Transient Feature of Flow Field in Wake of Ahmed Body
    Wang B.
    Yang Z.
    Zhu H.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (01): : 113 - 123
  • [25] LES of the turbulent coherent structures and particle dispersion in the gas-solid wake flows
    Luo, K
    Fan, JR
    Jin, HH
    Cen, KF
    POWDER TECHNOLOGY, 2004, 147 (1-3) : 49 - 58
  • [26] The nature of the vortical structures in the near wake of the Ahmed body
    Venning, James
    Lo Jacono, David
    Burton, David
    Thompson, Mark C.
    Sheridan, John
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2017, 231 (09) : 1239 - 1244
  • [27] On the two flow states in the wake of a hatchback Ahmed body
    Rao, A.
    Minelli, G.
    Basara, B.
    Krajnovic, S.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2018, 173 : 262 - 278
  • [28] A COMPUTATIONAL MODEL FOR A SYMMETRIC TURBULENT WAKE
    MUNUKUTLA, SS
    MATHEMATICAL AND COMPUTER MODELLING, 1988, 11 : 175 - 179
  • [29] Experimental and numerical modeling of the turbulent wake of a self-propelled body
    N. V. Gavrilov
    A. G. Demenkov
    V. A. Kostomakha
    G. G. Chernykh
    Journal of Applied Mechanics and Technical Physics, 2000, 41 (4)
  • [30] Experimental investigation of rear flexible flaps interacting with the wake dynamics behind a squareback Ahmed body
    Munoz-Hervas, J. C.
    Lorite-Diez, M.
    Garcia-Baena, C.
    Jimenez-Gonzalez, J. I.
    JOURNAL OF FLUIDS AND STRUCTURES, 2024, 127