Stabilizing Undercoordinated Zn Active Sites through Confinement in CeO2 Nanotubes for Efficient Electrochemical CO2 Reduction

被引:42
作者
Guo, Si-Tong [1 ]
Du, Yu-Wei [1 ]
Luo, Huihua [1 ]
Zhu, Ziyin [1 ]
Ouyang, Ting [1 ]
Liu, Zhao-Qing [1 ]
机构
[1] Guangzhou Univ, Guangzhou Higher Educ Mega Ctr,Minist Educ, Huangpu Hydrogen Innovat Ctr,Key Lab Water Qual &, Sch Chem & Chem Engn,Inst Clean Energy & Mat,Guan, 230 Wai Huan Xi Rd, Guangzhou 510006, Peoples R China
关键词
CO; Confinement Effect; Electrocatalytic CO2 Reduction; Undercoordinated Zn Sites; OXYGEN VACANCIES; CARBON-DIOXIDE; ELECTROREDUCTION; NANOPARTICLES; NANOCRYSTALS; SPECTROSCOPY; CERIA; INTERFACES; CATALYST;
D O I
10.1002/anie.202314099
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zn-based catalysts hold great potential to replace the noble metal-based ones for CO2 reduction reaction (CO2RR). Undercoordinated Zn (Zn delta+) sites may serve as the active sites for enhanced CO production by optimizing the binding energy of *COOH intermediates. However, there is relatively less exploration into the dynamic evolution and stability of Zn delta+ sites during CO2 reduction process. Herein, we present ZnO, Zn delta+/ZnO and Zn as catalysts by varying the applied reduction potential. Theoretical studies reveal that Zn delta+ sites could suppress HER and HCOOH production to induce CO generation. And Zn delta+/ZnO presents the highest CO selectivity (FECO 70.9 % at -1.48 V vs. RHE) compared to Zn and ZnO. Furthermore, we propose a CeO2 nanotube with confinement effect and Ce3+/Ce4+ redox to stabilize Zn delta+ species. The hollow core-shell structure of the Zn delta+/ZnO/CeO2 catalyst enables to extremely expose electrochemically active area while maintaining the Zn delta+ sites with long-time stability. Certainly, the target catalyst affords a FECO of 76.9 % at -1.08 V vs. RHE and no significant decay of CO selectivity in excess of 18 h.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Challenges and prospects in the selective photoreduction of CO2 to C1 and C2 products with nanostructured materials: a review [J].
Behera, Arjun ;
Kar, Ashish Kumar ;
Srivastava, Rajendra .
MATERIALS HORIZONS, 2022, 9 (02) :607-639
[2]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[3]   Unraveling photoexcited electron transfer pathway of oxygen vacancy-enriched ZnO/Pd hybrid toward visible light-enhanced methane detection at a relatively low temperature [J].
Chen, Ruosong ;
Wang, Jing ;
Luo, Shirui ;
Xiang, Lan ;
Li, Weiwei ;
Xie, Dan .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 264
[4]   Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO2-x/Cu toward Enhanced Activity for Preferential CO Oxidation [J].
Chen, Shaoqing ;
Li, Liping ;
Hu, Wanbiao ;
Huang, Xinsong ;
Li, Qi ;
Xu, Yangsen ;
Zuo, Ying ;
Li, Guangshe .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (41) :22999-23007
[5]   The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts [J].
Cheng, Dongfang ;
Zhao, Zhi-Jian ;
Zhang, Gong ;
Yang, Piaoping ;
Li, Lulu ;
Gao, Hui ;
Liu, Sihang ;
Chang, Xin ;
Chen, Sai ;
Wang, Tuo ;
Ozin, Geoffrey A. ;
Liu, Zhipan ;
Gong, Jinlong .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   Engineering CeO2 configurations to regulate the CuOx dispersion and switch pathways of preferential CO oxidation [J].
Ding, Junfang ;
Xu, Changjin ;
Fan, Guilan ;
Naren, Tuya ;
Wang, Yan ;
Liu, Yang ;
Gu, Xiaojun ;
Wu, Limin ;
Zeng, Shanghong .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 331
[7]   Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes [J].
Feaster, Jeremy T. ;
Shi, Chuan ;
Cave, Etosha R. ;
Hatsukade, Tom T. ;
Abram, David N. ;
Kuhl, Kendra P. ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2017, 7 (07) :4822-4827
[8]   A Heteroleptic Gold Hydride Nanocluster for Efficient and Selective Electrocatalytic Reduction of CO2 to CO [J].
Gao, Ze-Hua ;
Wei, Kecheng ;
Wu, Tao ;
Dong, Jia ;
Jiang, De-En ;
Sun, Shouheng ;
Wang, Lai-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (12) :5258-5262
[9]   Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO [J].
Geng, Zhigang ;
Kong, Xiangdong ;
Chen, Weiwei ;
Su, Hongyang ;
Liu, Yan ;
Cai, Fan ;
Wang, Guoxiong ;
Zeng, Jie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) :6054-6059
[10]   CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm-2 with InP Colloidal Quantum Dot Derived Catalysts [J].
Grigioni, Ivan ;
Sagar, Laxmi Kishore ;
Li, Yuguang C. ;
Lee, Geonhui ;
Yan, Yu ;
Bertens, Koen ;
Miao, Rui Kai ;
Wang, Xue ;
Abed, Jehad ;
Won, Da Hye ;
de Arquer, F. Pelayo Garcia ;
Ip, Alexander H. ;
Sinton, David ;
Sargent, Edward H. .
ACS ENERGY LETTERS, 2021, 6 (01) :79-84