Graphical solutions to one-phase free boundary problems

被引:3
作者
Engelstein, Max [1 ]
Fernandez-Real, Xavier [2 ]
Yu, Hui [3 ]
机构
[1] Univ Minnesota Twin Cities, Dept Math, 127 Vincent Hall,206 Church St SE, Minneapolis, MN 55455 USA
[2] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[3] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2023年 / 2023卷 / 804期
基金
瑞士国家科学基金会;
关键词
SEMILINEAR ELLIPTIC-EQUATIONS; FLAT FREE-BOUNDARIES; GLOBAL-SOLUTIONS; REGULARITY; CONJECTURE; INEQUALITY; MINIMIZERS; CONES;
D O I
10.1515/crelle-2023-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study viscosity solutions to the classical one-phase problem and its thin counterpart. In low dimensions, we show that when the free boundary is the graph of a continuous function, the solution is the half-plane solution. This answers, in the salient dimensions, a one-phase free boundary analogue of Bernstein's problem for minimal surfaces. As an application, we also classify monotone solutions of semilinear equations with a bump-type nonlinearity.
引用
收藏
页码:155 / 195
页数:41
相关论文
共 50 条
  • [11] Continuity and density results for a one-phase nonlocal free boundary problem
    Dipierro, Serena
    Valdinoci, Enrico
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (06): : 1387 - 1428
  • [12] Global Solutions to Nonlinear Two-Phase Free Boundary Problems
    De Silva, Daniela
    Savin, Ovidiu
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (10) : 2031 - 2062
  • [13] Classical solutions for a one-phase osmosis model
    Lippoth, Friedrich
    Prokert, Georg
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (02) : 413 - 434
  • [14] On Smooth Solutions to One Phase-Free Boundary Problem in Rn
    Liu, Yong
    Wang, Kelei
    Wei, Juncheng
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (20) : 15682 - 15732
  • [15] Structure of One-Phase Free Boundaries in the Plane
    Jerison, David
    Kamburov, Nikola
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (19) : 5922 - 5987
  • [16] THE SINGULAR HOMOGENEOUS SOLUTIONS TO ONE PHASE FREE BOUNDARY PROBLEM
    Hong, Guanghao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 4009 - 4015
  • [17] Thin one-phase almost minimizers
    De Silva, D.
    Savin, O.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193 (193)
  • [18] Lipschitz Regularity of Solutions to Two-phase Free Boundary Problems
    De Silva, D.
    Savin, O.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (07) : 2204 - 2222
  • [19] Regularity of the Solutions for Parabolic Two-Phase Free Boundary Problems
    Ferrari, Fausto
    Salsa, Sandro
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (06) : 1095 - 1129
  • [20] Domain variation solutions for degenerate two phase free boundary problems
    Dzhugan, Aleksandr
    Ferrari, Fausto
    MATHEMATICS IN ENGINEERING, 2021, 3 (06):