Graphical solutions to one-phase free boundary problems

被引:3
|
作者
Engelstein, Max [1 ]
Fernandez-Real, Xavier [2 ]
Yu, Hui [3 ]
机构
[1] Univ Minnesota Twin Cities, Dept Math, 127 Vincent Hall,206 Church St SE, Minneapolis, MN 55455 USA
[2] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[3] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2023年 / 2023卷 / 804期
基金
瑞士国家科学基金会;
关键词
SEMILINEAR ELLIPTIC-EQUATIONS; FLAT FREE-BOUNDARIES; GLOBAL-SOLUTIONS; REGULARITY; CONJECTURE; INEQUALITY; MINIMIZERS; CONES;
D O I
10.1515/crelle-2023-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study viscosity solutions to the classical one-phase problem and its thin counterpart. In low dimensions, we show that when the free boundary is the graph of a continuous function, the solution is the half-plane solution. This answers, in the salient dimensions, a one-phase free boundary analogue of Bernstein's problem for minimal surfaces. As an application, we also classify monotone solutions of semilinear equations with a bump-type nonlinearity.
引用
收藏
页码:155 / 195
页数:41
相关论文
共 50 条