Autoregressive Visual Tracking

被引:148
作者
Wei, Xing [1 ]
Bai, Yifan [1 ]
Zheng, Yongchao [1 ]
Shi, Dahu [2 ,3 ]
Gong, Yihong [1 ]
机构
[1] Xi An Jiao Tong Univ, Xian, Peoples R China
[2] Zhejiang Univ, Hangzhou, Peoples R China
[3] Hikvis Res Inst, Hangzhou, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.00935
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present ARTrack, an autoregressive framework for visual object tracking. ARTrack tackles tracking as a coordinate sequence interpretation task that estimates object trajectories progressively, where the current estimate is induced by previous states and in turn affects subsequences. This time-autoregressive approach models the sequential evolution of trajectories to keep tracing the object across frames, making it superior to existing template matching based trackers that only consider the per-frame localization accuracy. ARTrack is simple and direct, eliminating customized localization heads and post-processings. Despite its simplicity, ARTrack achieves state-of-the-art performance on prevailing benchmark datasets. Source code is available at https://github.com/MIV-XJTU/ARTrack.
引用
收藏
页码:9697 / 9706
页数:10
相关论文
共 69 条
[1]  
[Anonymous], 2021, CVPR, DOI DOI 10.1109/CVPR46437.2021.00905
[2]  
[Anonymous], 2016, 2016 IEEE INT C IMAG
[3]  
[Anonymous], 2018, CVPR, DOI DOI 10.1109/CVPR.2018.00515
[4]  
[Anonymous], 2020, CVPR, DOI DOI 10.1109/CVPR42600.2020.00630
[5]  
[Anonymous], 2018, ICCAD IEEE ACM INT, DOI DOI 10.1145/3240765.3240833
[6]  
[Anonymous], 2014, TPAMI
[7]  
[Anonymous], 2017, ICCV
[8]  
[Anonymous], ICCV
[9]  
Bai Shuai, 2021, CVPR
[10]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865