Challenges and new technologies in adoptive cell therapy

被引:104
作者
Zhang, Pengchao [1 ,2 ]
Zhang, Guizhong [1 ]
Wan, Xiaochun [1 ]
机构
[1] Inst Biomed & Biotechnol, Shenzhen Inst Adv Technol, Chinese Acad Sci, Ctr Prot & Cell based Drugs, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Adoptive cell therapy; Chimeric antigen receptor; T cell receptor; Cancer therapy; Gene transduction; CHIMERIC-ANTIGEN-RECEPTOR; CAR-T-CELLS; NATURAL-KILLER-CELLS; TUMOR-INFILTRATING LYMPHOCYTES; ACUTE LYMPHOBLASTIC-LEUKEMIA; BEAUTY TRANSPOSON SYSTEM; MEDIATED MESSENGER-RNA; INVARIANT NKT CELLS; MEMORY STEM-CELLS; IN-VIVO EXPANSION;
D O I
10.1186/s13045-023-01492-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-& gamma;& delta;T, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
引用
收藏
页数:55
相关论文
共 486 条
[1]   A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy [J].
Adusumilli, Prasad S. ;
Zauderer, Marjorie G. ;
Rusch, Valerie W. ;
O'Cearbhaill, Roisin E. ;
Zhu, Amy ;
Ngai, Daniel A. ;
McGee, Erin ;
Chintala, Navin K. ;
Messinger, John C. ;
Vincent, Alain ;
Halton, Elizabeth F. ;
Diamonte, Claudia ;
Pineda, John ;
Modi, Shanu ;
Solomon, Stephen B. ;
Jones, David R. ;
Brentjens, Renier J. ;
Riviere, Isabelle ;
Sadelain, Michel .
CANCER RESEARCH, 2019, 79 (13)
[2]   Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells [J].
Agarwalla, Pritha ;
Ogunnaike, Edikan A. ;
Ahn, Sarah ;
Froehlich, Kristen A. ;
Jansson, Anton ;
Ligler, Frances S. ;
Dotti, Gianpietro ;
Brudno, Yevgeny .
NATURE BIOTECHNOLOGY, 2022, 40 (08) :1250-+
[3]   Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection [J].
Agnellini, Paola ;
Wolint, Petra ;
Rehr, Manuela ;
Cahenzli, Julia ;
Karrer, Urs ;
Oxenius, Annette .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (11) :4565-4570
[4]   CAR-T-cell neurotoxicity: hope is on the horizon [J].
Ahmed, Omar .
BLOOD, 2019, 133 (20) :2114-2116
[5]   IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype [J].
Alizadeh, Darya ;
Wong, Robyn A. ;
Yang, Xin ;
Wang, Dongrui ;
Pecoraro, Joseph R. ;
Kuo, Cheng-Fu ;
Aguilar, Brenda ;
Qi, Yue ;
Ann, David K. ;
Starr, Renate ;
Urak, Ryan ;
Wang, Xiuli ;
Forman, Stephen J. ;
Brown, Christine E. .
CANCER IMMUNOLOGY RESEARCH, 2019, 7 (05) :759-772
[6]   Systematic improvements in lentiviral transduction of primary human natural killer cells undergoing ex vivo expansion [J].
Allan, David S. J. ;
Chakraborty, Mala ;
Waller, Giacomo C. ;
Hochman, Michael J. ;
Poolcharoen, Akkapon ;
Reger, Robert N. ;
Childs, Richard W. .
MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2021, 20 :559-571
[7]   An AND-Gated Drug and Photoactivatable Cre-loxP System for Spatiotemporal Control in Cell-Based Therapeutics [J].
Allen, Molly E. ;
Zhou, Wei ;
Thangaraj, Jeyan ;
Kyriakakis, Phillip ;
Wu, Yiqian ;
Huang, Ziliang ;
Phuong Ho ;
Pan, Yijia ;
Limsakul, Praopim ;
Xu, Xiangdong ;
Wang, Yingxiao .
ACS SYNTHETIC BIOLOGY, 2019, 8 (10) :2359-2371
[8]   Memory stem T cells modified with a redesigned CD30-chimeric antigen receptor show an enhanced antitumor effect in Hodgkin lymphoma [J].
Alvarez-Fernandez, Carmen ;
Escriba-Garcia, Laura ;
Caballero, A. C. ;
Escudero-Lopez, Eva ;
Ujaldon-Miro, Cristina ;
Montserrat-Torres, Rosanna ;
Pujol-Fernandez, Paula ;
Sierra, Jorge ;
Briones, Javier .
CLINICAL & TRANSLATIONAL IMMUNOLOGY, 2021, 10 (04)
[9]   SIRPA-Inhibited, Marrow-Derived Macrophages Engorge, Accumulate, and Differentiate in Antibody-Targeted Regression of Solid Tumors [J].
Alvey, Cory M. ;
Spinler, Kyle R. ;
Irianto, Jerome ;
Pfeifer, Charlotte R. ;
Hayes, Brandon ;
Xia, Yuntao ;
Cho, Sangkyun ;
Dingal, P. C. P. Dave ;
Hsu, Jake ;
Smith, Lucas ;
Tewari, Manu ;
Discher, Dennis E. .
CURRENT BIOLOGY, 2017, 27 (14) :2065-+
[10]   Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model [J].
Anthony-Gonda, Kim ;
Bardhi, Ariola ;
Ray, Alex ;
Flerin, Nina ;
Li, Mengyan ;
Chen, Weizao ;
Ochsenbauer, Christina ;
Kappes, John C. ;
Krueger, Winfried ;
Worden, Andrew ;
Schneider, Dina ;
Zhu, Zhongyu ;
Orentas, Rimas ;
Dimitrov, Dimiter S. ;
Goldstein, Harris ;
Dropulic, Boro .
SCIENCE TRANSLATIONAL MEDICINE, 2019, 11 (504)