Neighbor Sum Distinguishing Total Chromatic Number of Graphs with Lower Average Degree

被引:0
|
作者
Huang, Danjun [1 ]
Bao, Dan [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
关键词
Neighbor sum distinguishing total coloring; combinatorial nullstellensatz; maximum average degree; DISTINGUISHING TOTAL COLORINGS;
D O I
10.4208/jms.v56n2.23.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given simple graph G = (V(G),E(G)), a proper total -k-coloring c : V(G) UE(G)-* {1,2,...,k} is neighbor sum distinguishing if f (u) = f (v) for each edge uv E E(G), where f (v) = n-ary sumation wvEE(G)c(wv)+c(v). The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by & chi;& PRIME;& sigma;& PRIME;(G). It has been conjectured that & chi;& PRIME;& sigma;& PRIME;(G) < increment (G)+3 for any simple graph G. Let mad(G) =max{ 2|E(H)| |V(H)| : H C G } be the maximum average degree of G. In this paper, by using the famous Combinatorial Nullstellensatz, we prove & chi;& PRIME;& sigma;& PRIME; (G) < max{9, increment (G) +2} for any graph G with mad(G)<4. Furthermore, we characterize the neighbor sum distinguishing total chromatic number for every graph G with mad(G) < 4 and increment (G) > 8.
引用
收藏
页码:206 / 218
页数:13
相关论文
共 50 条
  • [1] Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10
    Yang, Donglei
    Sun, Lin
    Yu, Xiaowei
    Wu, Jianliang
    Zhou, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 456 - 468
  • [2] Neighbor sum distinguishing total chromatic number of planar graphs
    Xu, Changqing
    Li, Jianguo
    Ge, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 : 189 - 196
  • [3] Neighbor Sum Distinguishing Total Choosability of Graphs with Larger Maximum Average Degree
    Yao, Jing Jing
    Kong, Hai Rong
    ARS COMBINATORIA, 2016, 125 : 347 - 360
  • [4] Neighbor Sum Distinguishing Total Colorings of Graphs with Bounded Maximum Degree and Maximum Average Degree
    Qiu, Baojian
    Wang, Jihui
    Liu, Yan
    Xu, Zhenyu
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 898 - 901
  • [5] Neighbor sum distinguishing total chromatic number of 2-degenerate graphs
    Xu, Changqing
    Ge, Shan
    Li, Jianguo
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 349 - 352
  • [6] Neighbor sum distinguishing total chromatic number of planar graphs without, 4-cycles
    Ge, Shan
    Li, Jianguo
    Xu, Changqing
    UTILITAS MATHEMATICA, 2017, 105 : 259 - 265
  • [7] NEIGHBOR SUM DISTINGUISHING TOTAL CHROMATIC NUMBER OF PLANAR GRAPHS WITHOUT 5-CYCLES
    Zhao, Xue
    Xu, Chang-Qing
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 243 - 253
  • [8] On the total neighbour sum distinguishing index of graphs with bounded maximum average degree
    Hocquard, H.
    Przybylo, J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (02) : 412 - 424
  • [9] Neighbor sum distinguishing total chromatic number of K 4-minor free graph
    Song, Hongjie
    Xu, Changqing
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 937 - 947
  • [10] Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ
    Cheng, Xiaohan
    Huang, Danjun
    Wang, Guanghui
    Wu, Jianliang
    DISCRETE APPLIED MATHEMATICS, 2015, 190 : 34 - 41