COMPACT RETRACTIONS AND SCHAUDER DECOMPOSITIONS IN BANACH SPACES

被引:6
作者
Hajek, Petr [1 ]
Medina, Ruben [1 ,2 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Math, Tech 2, Prague 16627 6, Czech Republic
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, Granada 18071, Spain
关键词
Lipschitz retractions; approximation properties; APPROXIMATION PROPERTY;
D O I
10.1090/tran/8807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a separable Banach space. We give an almost characterization of the existence of a Finite Dimensional Decomposition (FDD for short) for X in terms of Lipschitz retractions onto generating compact subsets K of X. In one direction, if X admits an FDD then we construct a Lipschitz retraction onto a small generating convex and compact set K. On the other hand, we prove that if X admits a "small" generating compact Lipschitz retract then X has the p-property. It is still unknown if the p-property is isomorphically equivalent to the existence of an FDD. For dual Banach spaces this is true, so our results give a characterization of the FDD property for dual Banach spaces X. We give an example of a small generating convex compact set which is not a Lipschitz retract of C[0, 1], although it is contained in a small convex Lipschitz retract and contains another one. We characterize isomorphically Hilbertian spaces as those Banach spaces X for which every convex and compact subset is a Lipschitz retract of X. Finally, we prove that a convex and compact set K in any Banach space with a Uniformly Rotund in Every Direction norm is a uniform retract, of every bounded set containing it, via the nearest point map.
引用
收藏
页码:1343 / 1372
页数:30
相关论文
共 50 条
  • [41] Compact reduction in Lipschitz-free spaces
    Aliaga, Ramon J.
    Nous, Camille
    Petitjean, Colin
    Prochazka, Antonin
    [J]. STUDIA MATHEMATICA, 2021, 260 (03) : 341 - 359
  • [42] ON SPACES OF WEAK* TO WEAK CONTINUOUS COMPACT OPERATORS
    Kim, Ju Myung
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (01) : 161 - 173
  • [43] APPROXIMATION PROPERTIES AND NON-LINEAR GEOMETRY OF BANACH SPACES
    Borel-Mathurin, Laetitia
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1135 - 1148
  • [44] The Lidskii trace property and the nest approximation property in Banach spaces
    Figiel, T.
    Johnson, W. B.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (03) : 566 - 576
  • [45] Approximation properties of tensor norms and operator ideals for Banach spaces
    Kim, Ju Myung
    [J]. OPEN MATHEMATICS, 2020, 18 : 1698 - 1708
  • [46] Approximation and Schur properties for Lipschitz free spaces over compact metric spaces
    Hajek, P.
    Lancien, G.
    Pernecka, E.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (01) : 63 - 72
  • [47] BEHAVIOR OF HOLOMORPHIC MAPPINGS ON p-COMPACT SETS IN A BANACH SPACE
    Aron, Richard M.
    Caliskan, Erhan
    Garcia, Domingo
    Maestre, Manuel
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (07) : 4855 - 4871
  • [48] On Projectional Skeletons and the Plichko Property in Lipschitz-Free Banach Spaces
    Guirao, Antonio J.
    Montesinos, Vicente
    Quilis, Andres
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [49] On Projectional Skeletons and the Plichko Property in Lipschitz-Free Banach Spaces
    Antonio J. Guirao
    Vicente Montesinos
    Andrés Quilis
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [50] Banach spaces of linear operators and homogeneous polynomials without the approximation property
    Sergio A. Pérez
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 855 - 862