COMPACT RETRACTIONS AND SCHAUDER DECOMPOSITIONS IN BANACH SPACES

被引:6
|
作者
Hajek, Petr [1 ]
Medina, Ruben [1 ,2 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Math, Tech 2, Prague 16627 6, Czech Republic
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, Granada 18071, Spain
关键词
Lipschitz retractions; approximation properties; APPROXIMATION PROPERTY;
D O I
10.1090/tran/8807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a separable Banach space. We give an almost characterization of the existence of a Finite Dimensional Decomposition (FDD for short) for X in terms of Lipschitz retractions onto generating compact subsets K of X. In one direction, if X admits an FDD then we construct a Lipschitz retraction onto a small generating convex and compact set K. On the other hand, we prove that if X admits a "small" generating compact Lipschitz retract then X has the p-property. It is still unknown if the p-property is isomorphically equivalent to the existence of an FDD. For dual Banach spaces this is true, so our results give a characterization of the FDD property for dual Banach spaces X. We give an example of a small generating convex compact set which is not a Lipschitz retract of C[0, 1], although it is contained in a small convex Lipschitz retract and contains another one. We characterize isomorphically Hilbertian spaces as those Banach spaces X for which every convex and compact subset is a Lipschitz retract of X. Finally, we prove that a convex and compact set K in any Banach space with a Uniformly Rotund in Every Direction norm is a uniform retract, of every bounded set containing it, via the nearest point map.
引用
收藏
页码:1343 / 1372
页数:30
相关论文
共 50 条
  • [1] Retractions and the bounded approximation property in Banach spaces
    Hajek, Petr
    Medina, Ruben
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [2] Retractions and the bounded approximation property in Banach spaces
    Petr Hájek
    Rubén Medina
    Mediterranean Journal of Mathematics, 2023, 20
  • [3] Schauder bases in Lipschitz free spaces over nets in Banach spaces
    Hajek, Petr
    Medina, Ruben
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (02)
  • [4] Lipschitz retractions and complementation properties of Banach spaces
    Hajek, Petr
    Quilis, Andres
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (01)
  • [5] Approximation properties and Schauder decompositions in Lipschitz-free spaces
    Lancien, G.
    Pernecka, E.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (10) : 2323 - 2334
  • [6] Remarks on Spaces of Compact Operators between Reflexive Banach Spaces
    Godefroy, G.
    OPERATOR THEORY IN HARMONIC AND NON-COMMUTATIVE ANALYSIS, 2014, 240 : 189 - 194
  • [7] The structure of compact linear operators in Banach spaces
    Edmunds, D. E.
    Evans, W. D.
    Harris, D. J.
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02): : 445 - 469
  • [8] The structure of compact linear operators in Banach spaces
    D. E. Edmunds
    W. D. Evans
    D. J. Harris
    Revista Matemática Complutense, 2013, 26 : 445 - 469
  • [9] Schauder bases in Lipschitz free spaces over nets of L∞-spaces
    Hajek, Petr
    Medina, Ruben
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)
  • [10] Compact Holder retractions and nearest point maps
    Medina, Ruben
    ADVANCES IN MATHEMATICS, 2023, 428