Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds

被引:9
作者
Zeller, Matthias [1 ,2 ]
Sandhu, Vardeep S. [1 ,2 ]
Mersch, Benedikt [2 ]
Behley, Jens [2 ]
Heidingsfeld, Michael [3 ]
Stachniss, Cyrill [2 ,4 ,5 ]
机构
[1] CARIAD SE, D-53115 Bonn, Germany
[2] Univ Bonn, D-53115 Bonn, Germany
[3] CARIAD SE, D-71297 Monsheim, Germany
[4] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
[5] Lamarr Inst Machine Learning & Artificial Intellig, Dortmund, Germany
关键词
Radar; Point cloud compression; Feature extraction; Transformers; Task analysis; Encoding; Sensors; Deep learning in robotics and automation; object detection; radar perception; segmentation and categorization; semantic scene understanding;
D O I
10.1109/TRO.2023.3338972
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The perception of moving objects is crucial for autonomous robots performing collision avoidance in dynamic environments. LiDARs and cameras tremendously enhance scene interpretation but do not provide direct motion information and face limitations under adverse weather. Radar sensors overcome these limitations and provide Doppler velocities, delivering direct information on dynamic objects. In this article, we address the problem of moving instance segmentation in radar point clouds to enhance scene interpretation for safety-critical tasks. Our radar instance transformer enriches the current radar scan with temporal information without passing aggregated scans through a neural network. We propose a full-resolution backbone to prevent information loss in sparse point cloud processing. Our instance transformer head incorporates essential information to enhance segmentation but also enables reliable, class-agnostic instance assignments. In sum, our approach shows superior performance on the new moving instance segmentation benchmarks, including diverse environments, and provides model-agnostic modules to enhance scene interpretation.
引用
收藏
页码:2357 / 2372
页数:16
相关论文
共 50 条
[31]   Semantic Labeling and Instance Segmentation of 3D Point Clouds Using Patch Context Analysis and Multiscale Processing [J].
Hu, Shi-Min ;
Cai, Jun-Xiong ;
Lai, Yu-Kun .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (07) :2485-2498
[32]   Point Cloud Instance Segmentation With Semi-Supervised Bounding-Box Mining [J].
Liao, Yongbin ;
Zhu, Hongyuan ;
Zhang, Yanggang ;
Ye, Chuangguan ;
Chen, Tao ;
Fan, Jiayuan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) :10159-10170
[33]   A Transformer-Based Roof Plane Segmentation Approach for Airborne LiDAR Point Clouds [J].
You, Siyuan ;
Xu, Guozheng ;
Zhou, Pengwei ;
Wei, Yubing ;
Yao, Jian ;
Li, Li .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
[34]   Automatic Waveform Recognition of Overlapping LPI Radar Signals Based on Multi-Instance Multi-Label Learning [J].
Pan, Zesi ;
Wang, Shafei ;
Zhu, Mengtao ;
Li, Yunjie .
IEEE SIGNAL PROCESSING LETTERS, 2020, 27 :1275-1279
[35]   A Simple Single-Scale Vision Transformer for Object Detection and Instance Segmentation [J].
Chen, Wuyang ;
Du, Xianzhi ;
Yang, Fan ;
Beyer, Lucas ;
Zhai, Xiaohua ;
Lin, Tsung-Yi ;
Chen, Huizhong ;
Li, Jing ;
Song, Xiaodan ;
Wang, Zhangyang ;
Zhou, Denny .
COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 :711-727
[36]   Instance-Incremental Scene Graph Generation From Real-World Point Clouds via Normalizing Flows [J].
Qi, Chao ;
Yin, Jianqin ;
Xu, Jinghang ;
Ding, Pengxiang .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) :1057-1069
[37]   Object detection for automotive radar point clouds – a comparison [J].
Nicolas Scheiner ;
Florian Kraus ;
Nils Appenrodt ;
Jürgen Dickmann ;
Bernhard Sick .
AI Perspectives, 3 (1)
[38]   Lightweight Midrange Arm-Gesture Recognition System From mmWave Radar Point Clouds [J].
Xie, Haihua ;
Han, Peidong ;
Li, Changhe ;
Chen, Yiqin ;
Zeng, Sanyou .
IEEE SENSORS JOURNAL, 2023, 23 (02) :1261-1270
[39]   Point-Set Anchors for Object Detection, Instance Segmentation and Pose Estimation [J].
Wei, Fangyun ;
Sun, Xiao ;
Li, Hongyang ;
Wang, Jingdong ;
Lin, Stephen .
COMPUTER VISION - ECCV 2020, PT X, 2020, 12355 :527-544
[40]   Object Detection and Tracking Based on Image and Point Clouds Instance Matching for Intelligent Vehicles [J].
Li, Shangjie ;
Yin, Guodong ;
Geng, Keke ;
Liu, Shuaipeng .
Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (22) :302-310