Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds

被引:6
作者
Zeller, Matthias [1 ,2 ]
Sandhu, Vardeep S. [1 ,2 ]
Mersch, Benedikt [2 ]
Behley, Jens [2 ]
Heidingsfeld, Michael [3 ]
Stachniss, Cyrill [2 ,4 ,5 ]
机构
[1] CARIAD SE, D-53115 Bonn, Germany
[2] Univ Bonn, D-53115 Bonn, Germany
[3] CARIAD SE, D-71297 Monsheim, Germany
[4] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
[5] Lamarr Inst Machine Learning & Artificial Intellig, Dortmund, Germany
关键词
Radar; Point cloud compression; Feature extraction; Transformers; Task analysis; Encoding; Sensors; Deep learning in robotics and automation; object detection; radar perception; segmentation and categorization; semantic scene understanding;
D O I
10.1109/TRO.2023.3338972
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The perception of moving objects is crucial for autonomous robots performing collision avoidance in dynamic environments. LiDARs and cameras tremendously enhance scene interpretation but do not provide direct motion information and face limitations under adverse weather. Radar sensors overcome these limitations and provide Doppler velocities, delivering direct information on dynamic objects. In this article, we address the problem of moving instance segmentation in radar point clouds to enhance scene interpretation for safety-critical tasks. Our radar instance transformer enriches the current radar scan with temporal information without passing aggregated scans through a neural network. We propose a full-resolution backbone to prevent information loss in sparse point cloud processing. Our instance transformer head incorporates essential information to enhance segmentation but also enables reliable, class-agnostic instance assignments. In sum, our approach shows superior performance on the new moving instance segmentation benchmarks, including diverse environments, and provides model-agnostic modules to enhance scene interpretation.
引用
收藏
页码:2357 / 2372
页数:16
相关论文
共 50 条
  • [1] SemRaFiner: Panoptic Segmentation in Sparse and Noisy Radar Point Clouds
    Zeller, Matthias
    Herraez, Daniel Casado
    Ayan, Bengisu
    Behley, Jens
    Heidingsfeld, Michael
    Stachniss, Cyrill
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (02): : 923 - 930
  • [2] Deep Instance Segmentation With Automotive Radar Detection Points
    Liu, Jianan
    Xiong, Weiyi
    Bai, Liping
    Xia, Yuxuan
    Huang, Tao
    Ouyang, Wanli
    Zhu, Bing
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 84 - 94
  • [3] BGPSeg: Boundary-Guided Primitive Instance Segmentation of Point Clouds
    Fang, Zheng
    Zhuang, Chuanqing
    Lu, Zhengda
    Wang, Yiqun
    Liu, Lupeng
    Xiao, Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 1454 - 1468
  • [4] Scalable SoftGroup for 3D Instance Segmentation on Point Clouds
    Vu, Thang
    Kim, Kookhoi
    Nguyen, Thanh
    Luu, Tung M.
    Kim, Junyeong
    Yoo, Chang D.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 1981 - 1995
  • [5] High Precision Leaf Instance Segmentation for Phenotyping in Point Clouds Obtained Under Real Field Conditions
    Marks, Elias
    Sodano, Matteo
    Magistri, Federico
    Wiesmann, Louis
    Desai, Dhagash
    Marcuzzi, Rodrigo
    Behley, Jens
    Stachniss, Cyrill
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4791 - 4798
  • [6] Segmentation of Drone Collision Hazards in Airborne RADAR Point Clouds Using PointNet
    Arroyo, Hector
    Keir, Paul
    Angus, Dylan
    Matalonga, Santiago
    Georgiev, Svetlozar
    Goli, Mehdi
    Dooly, Gerard
    Riordan, James
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 17762 - 17777
  • [7] PointINS: Point-Based Instance Segmentation
    Qi, Lu
    Wang, Yi
    Chen, Yukang
    Chen, Ying-Cong
    Zhang, Xiangyu
    Sun, Jian
    Jia, Jiaya
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 6377 - 6392
  • [8] Unobtrusive People Identification and Tracking Using Radar Point Clouds
    Chowdhury, Arijit
    Pattnaik, Naibedya
    Ray, Arindam
    Chakravarty, Soumya
    Chakravarty, Tapas
    Pal, Arpan
    IEEE SENSORS LETTERS, 2023, 7 (12) : 1 - 4
  • [9] Transformer-Based Efficient Salient Instance Segmentation Networks With Orientative Query
    Pei, Jialun
    Cheng, Tianyang
    Tang, He
    Chen, Chuanbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1964 - 1978
  • [10] Person Reidentification Based on Automotive Radar Point Clouds
    Cheng, Yuwei
    Liu, Yimin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60