Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge

被引:25
作者
Ali, Sharib [1 ,2 ,3 ]
Ghatwary, Noha [4 ]
Jha, Debesh [5 ,6 ]
Isik-Polat, Ece [7 ]
Polat, Gorkem [7 ]
Yang, Chen [8 ]
Li, Wuyang [8 ]
Galdran, Adrian [9 ]
Ballester, Miguel-Angel Gonzalez [9 ,10 ]
Thambawita, Vajira [5 ]
Hicks, Steven [5 ]
Poudel, Sahadev [11 ]
Lee, Sang-Woong [11 ]
Jin, Ziyi [12 ]
Gan, Tianyuan [12 ]
Yu, Chenghui [13 ]
Yan, Jiangpeng [14 ]
Yeo, Doyeob [15 ]
Lee, Hyunseok [16 ]
Tomar, Nikhil Kumar [17 ]
Haithami, Mahmood [18 ]
Ahmed, Amr [19 ]
Riegler, Michael A. [5 ,6 ]
Daul, Christian [20 ,21 ]
Halvorsen, Pal [5 ,22 ]
Rittscher, Jens [2 ]
Salem, Osama E. [23 ]
Lamarque, Dominique [24 ]
Cannizzaro, Renato [25 ]
Realdon, Stefano [25 ,26 ]
de Lange, Thomas [27 ,28 ,29 ]
East, James E. [3 ,30 ]
机构
[1] Univ Leeds, Fac Engn & Phys Sci, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Oxford, Inst Biomed Engn, Dept Engn Sci, Oxford OX3 7DQ, England
[3] Oxford Natl Inst Hlth Res, Biomed Res Ctr, Oxford OX4 2PG, England
[4] Arab Acad Sci & Technol, Comp Engn Dept, Giza, Egypt
[5] SimulaMet, N-0167 Oslo, Norway
[6] UiT Arctic Univ Norway, Dept Social Sci, Hansine Hansens Veg 18, N-9019 Tromso, Norway
[7] Middle East Tech Univ, Grad Sch Informat, TR-06800 Ankara, Turkiye
[8] City Univ Hong Kong, Kowloon, Hong Kong, Peoples R China
[9] Univ Pompeu Fabra, Dept Informat & Commun Technol, BCN MedTech, Barcelona 08018, Spain
[10] ICREA, Barcelona, Spain
[11] Gachon Univ, Dept IT Convergence Engn, Seongnam 13120, South Korea
[12] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Hangzhou 310027, Peoples R China
[13] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[14] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[15] Korea Atom Energy Res Inst, Smart Sensing & Diag Res Div, Taejon 34057, South Korea
[16] Daegu Gyeongbuk Med Innovat Fdn, Med Device Dev Ctr, Taegu 701310, South Korea
[17] Nepal Appl Math & Informat Inst Res NAAMII, Kathmandu, Nepal
[18] Univ Nottingham, Comp Sci Dept, Malaysia Campus, Semenyih 43500, Malaysia
[19] Edge Hill Univ, Comp Sci, Ormskirk, Lancs, England
[20] Univ Lorraine, CRAN, UMR 7039, F-54500 Vandoeuvre Les Nancy, France
[21] CNRS, F-54500 Vandoeuvre Les Nancy, France
[22] Oslo Metropolitan Univ, Pilestredet 46, N-0167 Oslo, Norway
[23] Univ Alexandria, Fac Med, Alexandria 21131, Egypt
[24] Univ Versailles St Quentin Yvelines, Hop Ambroise Pare, 9 Av Charles Gaulle, F-92100 Boulogne, France
[25] IRCCS Aviano Italy, CRO Ctr Riferimento Oncol, Via Franco Gallini 2, I-33081 Aviano, Italy
[26] IRCCS, Veneto Inst Oncol IOV, Via Gattamelata 64, I-35128 Padua, Italy
[27] Sahlgrenska Univ Hosp Molndal, Med Dept, Bla Straket 5, S-41345 Molndal, Sweden
[28] Univ Gothenburg, Sahlgrenska Acad, Dept Mol & Clin Med, SE-41345 Gothenburg, Sweden
[29] Augere Med, Nedre Vaskegang 6, N-0186 Oslo, Norway
[30] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Med, Expt Med Div,Translat Gastroenterol Unit, Oxford OX3 9DU, England
关键词
D O I
10.1038/s41598-024-52063-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy surveillance and removal of polyps are highly operator-dependent procedures and occur in a highly complex organ topology. There exists a high missed detection rate and incomplete removal of colonic polyps. To assist in clinical procedures and reduce missed rates, automated methods for detecting and segmenting polyps using machine learning have been achieved in past years. However, the major drawback in most of these methods is their ability to generalise to out-of-sample unseen datasets from different centres, populations, modalities, and acquisition systems. To test this hypothesis rigorously, we, together with expert gastroenterologists, curated a multi-centre and multi-population dataset acquired from six different colonoscopy systems and challenged the computational expert teams to develop robust automated detection and segmentation methods in a crowd-sourcing Endoscopic computer vision challenge. This work put forward rigorous generalisability tests and assesses the usability of devised deep learning methods in dynamic and actual clinical colonoscopy procedures. We analyse the results of four top performing teams for the detection task and five top performing teams for the segmentation task. Our analyses demonstrate that the top-ranking teams concentrated mainly on accuracy over the real-time performance required for clinical applicability. We further dissect the devised methods and provide an experiment-based hypothesis that reveals the need for improved generalisability to tackle diversity present in multi-centre datasets and routine clinical procedures.
引用
收藏
页数:16
相关论文
共 34 条
[1]  
Ali S., 2021, CEUR WORKSHOP PROC, V2886
[2]   A multi-centre polyp detection and segmentation dataset for generalisability assessment [J].
Ali, Sharib ;
Jha, Debesh ;
Ghatwary, Noha ;
Realdon, Stefano ;
Cannizzaro, Renato ;
Salem, Osama E. ;
Lamarque, Dominique ;
Daul, Christian ;
Riegler, Michael A. ;
Anonsen, Kim V. ;
Petlund, Andreas ;
Halvorsen, Pal ;
Rittscher, Jens ;
de Lange, Thomas ;
East, James E. .
SCIENTIFIC DATA, 2023, 10 (01)
[3]   Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy ? [J].
Ali, Sharib ;
Dmitrieva, Mariia ;
Ghatwary, Noha ;
Bano, Sophia ;
Polat, Gorkem ;
Temizel, Alptekin ;
Krenzer, Adrian ;
Hekalo, Amar ;
Guo, Yun Bo ;
Matuszewski, Bogdan ;
Gridach, Mourad ;
Voiculescu, Irina ;
Yoganand, Vishnusai ;
Chavan, Arnav ;
Raj, Aryan ;
Nguyen, Nhan T. ;
Tran, Dat Q. ;
Huynh, Le Duy ;
Boutry, Nicolas ;
Rezvy, Shahadate ;
Chen, Haijian ;
Choi, Yoon Ho ;
Subramanian, Anand ;
Balasubramanian, Velmurugan ;
Gao, Xiaohong W. ;
Hu, Hongyu ;
Liao, Yusheng ;
Stoyanov, Danail ;
Daul, Christian ;
Realdon, Stefano ;
Cannizzaro, Renato ;
Lamarque, Dominique ;
Tran-Nguyen, Terry ;
Bailey, Adam ;
Braden, Barbara ;
East, James E. ;
Rittscher, Jens .
MEDICAL IMAGE ANALYSIS, 2021, 70 (70)
[4]   An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy [J].
Ali, Sharib ;
Zhou, Felix ;
Braden, Barbara ;
Bailey, Adam ;
Yang, Suhui ;
Cheng, Guanju ;
Zhang, Pengyi ;
Li, Xiaoqiong ;
Kayser, Maxime ;
Soberanis-Mukul, Roger D. ;
Albarqouni, Shadi ;
Wang, Xiaokang ;
Wang, Chunqing ;
Watanabe, Seiryo ;
Oksuz, Ilkay ;
Ning, Qingtian ;
Yang, Shufan ;
Khan, Mohammad Azam ;
Gao, Xiaohong W. ;
Realdon, Stefano ;
Loshchenov, Maxim ;
Schnabel, Julia A. ;
East, James E. ;
Wagnieres, Georges ;
Loschenov, Victor B. ;
Grisan, Enrico ;
Daul, Christian ;
Blondel, Walter ;
Rittscher, Jens .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]  
Bochkovskiy A, 2020, Arxiv, DOI arXiv:2004.10934
[6]   HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy [J].
Borgli, Hanna ;
Thambawita, Vajira ;
Smedsrud, Pia H. ;
Hicks, Steven ;
Jha, Debesh ;
Eskeland, Sigrun L. ;
Randel, Kristin Ranheim ;
Pogorelov, Konstantin ;
Lux, Mathias ;
Nguyen, Duc Tien Dang ;
Johansen, Dag ;
Griwodz, Carsten ;
Stensland, Hakon K. ;
Garcia-Ceja, Enrique ;
Schmidt, Peter T. ;
Hammer, Hugo L. ;
Riegler, Michael A. ;
Halvorsen, Pal ;
de Lange, Thomas .
SCIENTIFIC DATA, 2020, 7 (01)
[7]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[8]   EndoUDA: A Modality Independent Segmentation Approach for Endoscopy Imaging [J].
Celik, Numan ;
Ali, Sharib ;
Gupta, Soumya ;
Braden, Barbara ;
Rittscher, Jens .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 :303-312
[9]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[10]  
Galdran A., 2021, P 3 INT WORKSH CHALL