Maximum-likelihood estimation in ptychography in the presence of Poisson-Gaussian noise statistics

被引:8
|
作者
Seifert, Jacob [1 ,2 ]
Shao, Yifeng [1 ,2 ,3 ]
Van Dam, Rens [1 ,2 ]
Bouchet, Dorian [4 ]
Van Leeuwen, Tristan [5 ,6 ]
Mosk, Allard P. [1 ,2 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Nanophoton, POB 80000, NL-3508 TA Utrecht, Netherlands
[2] Univ Utrecht, Ctr Extreme Matter & Emergent Phenomena, POB 80000, NL-3508 TA Utrecht, Netherlands
[3] Delft Univ Technol, Appl Sci Fac, Imaging Phys Dept, Delft, Netherlands
[4] Univ Grenoble Alpes, LIPhy, CNRS, F-38000 Grenoble, France
[5] Ctr Wiskunde & Informat, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[6] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
关键词
MICROSCOPY;
D O I
10.1364/OL.502344
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical measurements often exhibit mixed Poisson-Gaussian noise statistics, which hampers the image quality, particularly under low signal-to-noise ratio (SNR) conditions. Computational imaging falls short in such situations when solely Poissonian noise statistics are assumed. In response to this challenge, we define a loss function that explicitly incorporates this mixed noise nature. By using a maximumlikelihood estimation, we devise a practical method to account for a camera readout noise in gradient-based ptychography optimization. Our results, based on both experimental and numerical data, demonstrate that this approach outperforms the conventional one, enabling enhanced image reconstruction quality under challenging noise conditions through a straightforward methodological adjustment.
引用
收藏
页码:6027 / 6030
页数:4
相关论文
共 50 条
  • [31] Gaussian maximum-likelihood channel estimation with short training sequences
    Rousseaux, O
    Leus, G
    Stoica, P
    Moonen, M
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2005, 4 (06) : 2945 - 2955
  • [32] An Unbiased Risk Estimator for Image Denoising in the Presence of Mixed Poisson-Gaussian Noise
    Le Montagner, Yoann
    Angelini, Elsa D.
    Olivo-Marin, Jean-Christophe
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (03) : 1255 - 1268
  • [33] CORRECTIONS TO ON THE EXACT MAXIMUM-LIKELIHOOD ESTIMATION OF GAUSSIAN AUTOREGRESSIVE PROCESSES
    CERNUSCHIFRIAS, B
    ROGERS, JD
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (02): : 298 - 298
  • [34] MAXIMUM-LIKELIHOOD ESTIMATION OF PARAMETERS IN BIRTH AND DEATH PROCESSES BY POISSON SAMPLING
    BABA, Y
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1982, 25 (02) : 99 - 112
  • [35] MAXIMUM-LIKELIHOOD ESTIMATE FOR SIGNAL PARAMETER IN WHITE GAUSSIAN NOISE.
    Burnashev, M.V.
    Problems of Information Transmission (English translation of Problemy Peredachi Informatsii), 1975, 11 (04): : 302 - 313
  • [36] MAXIMUM-LIKELIHOOD STACKING IN WHITE GAUSSIAN-NOISE WITH UNKNOWN VARIANCES
    GIMLIN, DR
    KEENER, MS
    LAWRENCE, JF
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1982, 20 (01): : 91 - 98
  • [37] The Maximum-Likelihood Noise Magnitude Estimation in ADC Linearity Measurements
    Gendai, Yuji
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (07) : 1746 - 1754
  • [38] Performance estimation for maximum-likelihood detection for channels with transition noise
    Chen, ML
    Trachtenberg, EA
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (03) : 754 - 762
  • [39] PINT: Maximum-likelihood Estimation of Pulsar Timing Noise Parameters
    Susobhanan, Abhimanyu
    Kaplan, David L.
    Archibald, Anne M.
    Luo, Jing
    Ray, Paul S.
    Pennucci, Timothy T.
    Ransom, Scott M.
    Agazie, Gabriella
    Fiore, William
    Larsen, Bjorn
    O'Neill, Patrick
    van Haasteren, Rutger
    Anumarlapudi, Akash
    Bachetti, Matteo
    Bhakta, Deven
    Champagne, Chloe A.
    Cromartie, H. Thankful
    Demorest, Paul B.
    Jennings, Ross J.
    Kerr, Matthew
    Levina, Sasha
    McEwen, Alexander
    Shapiro-Albert, Brent J.
    Swiggum, Joseph K.
    ASTROPHYSICAL JOURNAL, 2024, 971 (02):