Maximum-likelihood estimation in ptychography in the presence of Poisson-Gaussian noise statistics

被引:8
|
作者
Seifert, Jacob [1 ,2 ]
Shao, Yifeng [1 ,2 ,3 ]
Van Dam, Rens [1 ,2 ]
Bouchet, Dorian [4 ]
Van Leeuwen, Tristan [5 ,6 ]
Mosk, Allard P. [1 ,2 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Nanophoton, POB 80000, NL-3508 TA Utrecht, Netherlands
[2] Univ Utrecht, Ctr Extreme Matter & Emergent Phenomena, POB 80000, NL-3508 TA Utrecht, Netherlands
[3] Delft Univ Technol, Appl Sci Fac, Imaging Phys Dept, Delft, Netherlands
[4] Univ Grenoble Alpes, LIPhy, CNRS, F-38000 Grenoble, France
[5] Ctr Wiskunde & Informat, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[6] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
关键词
MICROSCOPY;
D O I
10.1364/OL.502344
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical measurements often exhibit mixed Poisson-Gaussian noise statistics, which hampers the image quality, particularly under low signal-to-noise ratio (SNR) conditions. Computational imaging falls short in such situations when solely Poissonian noise statistics are assumed. In response to this challenge, we define a loss function that explicitly incorporates this mixed noise nature. By using a maximumlikelihood estimation, we devise a practical method to account for a camera readout noise in gradient-based ptychography optimization. Our results, based on both experimental and numerical data, demonstrate that this approach outperforms the conventional one, enabling enhanced image reconstruction quality under challenging noise conditions through a straightforward methodological adjustment.
引用
收藏
页码:6027 / 6030
页数:4
相关论文
共 50 条
  • [1] Maximum-likelihood estimation in ptychography in the presence of Poisson-Gaussian noise statistics publisher's note (vol 48, 6027, 2023)
    Seifert, Jacob
    Shao, Yifeng
    Van Dam, Rens
    Bouchet, Dorian
    Van Leeuwen, Tristan
    Mosk, Allard p.
    OPTICS LETTERS, 2023, 48 (23) : 6291 - 6291
  • [2] Cramer-Rao lower bound and maximum-likelihood estimation in ptychography with Poisson noise
    Wei, Xukang
    Urbach, H. Paul
    Coene, Wim M. J.
    PHYSICAL REVIEW A, 2020, 102 (04)
  • [3] Evaluation of maximum-likelihood position estimation with Poisson and Gaussian noise models in a small gamma camera
    Chung, YH
    Choi, Y
    Song, TY
    Jung, JH
    Cho, G
    2002 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-3, 2003, : 947 - 950
  • [4] Evaluation of maximum-likelihood position estimation with Poisson and Gaussian noise models in a small gamma camera
    Chung, YH
    Choi, Y
    Song, TY
    Jung, JH
    Cho, G
    Choe, YS
    Lee, KH
    Kim, SE
    Kim, BT
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2004, 51 (01) : 101 - 104
  • [5] ROBUST MAXIMUM-LIKELIHOOD BEARING ESTIMATION IN CONTAMINATED GAUSSIAN-NOISE
    LEE, DD
    KASHYAP, RL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (08) : 1983 - 1986
  • [6] MAXIMUM-LIKELIHOOD ESTIMATION IN THE PRESENCE OF OUTLIERS
    GATHER, U
    KALE, BK
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (11) : 3767 - 3784
  • [8] Stochastic Maximum-Likelihood DOA estimation in the presence of unknown nonuniform noise
    Chen, C. E.
    Lorenzelli, F.
    Hudson, R. E.
    Yao, K.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 2481 - 2484
  • [9] MAXIMUM-LIKELIHOOD CHANNEL ESTIMATION IN PRESENCE OF IMPULSIVE NOISE FOR PLC SYSTEMS
    Shrestha, Deep
    Mestre, Xavier
    Payaro, Miquel
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 20 - 24
  • [10] Stochastic maximum-likelihood DOA estimation in the presence of unknown nonuniform noise
    Chen, Chiao En
    Lorenzelli, Flavio
    Hudson, Ralph. E.
    Yao, Kung
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) : 3038 - 3044