A Dynamically Stable Mixed Conducting Interphase for All-Solid-State Lithium Metal Batteries

被引:80
|
作者
Li, Shuai [1 ]
Yang, Shi-Jie [1 ]
Liu, Gui-Xian [3 ]
Hu, Jiang-Kui [1 ]
Liao, Yu-Long [1 ]
Wang, Xi-Long [1 ]
Wen, Rui [3 ]
Yuan, Hong [1 ]
Huang, Jia-Qi [1 ,4 ,5 ]
Zhang, Qiang [2 ]
机构
[1] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Tsinghua Ctr Green Chem Engn Electrificat, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[4] Sungkyunkwan Univ, Ctr Next Generat Energy Mat, Suwon 16419, Gyeonggi Do, South Korea
[5] Sungkyunkwan Univ, Sch Chem Engn, Suwon 16419, Gyeonggi Do, South Korea
基金
中国国家自然科学基金;
关键词
all-solid-state Li metal batteries; Li dendrite formation; Li metal anode; mixed conducting interphase; sulfide electrolytes; LI-METAL; INTERFACE; GROWTH; ELECTROLYTE; MECHANISMS; STABILITY; CHEMISTRY; DENDRITE; ANODES;
D O I
10.1002/adma.202307768
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium (Li) metal batteries (ASSLMBs) employing sulfide solid electrolytes have attracted increasing attention owing to superior safety and high energy density. However, the instability of sulfide electrolytes against Li metal induces the formation of two types of incompetent interphases, solid electrolyte interphase (SEI) and mixed conducting interphase (MCI), which significantly blocks rapid Li-ion transport and induces uneven Li deposition and continuous interface degradation. In this contribution, a dynamically stable mixed conducting interphase (S-MCI) is proposed by in situ stress self-limiting reaction to achieve the compatibility of Li metal with composite sulfide electrolytes (Li6PS5Cl (LPSCl) and Li10GeP2S12 (LGPS)). The rational design of composite electrolytes utilizes the expansion stress induced by the electrolyte decomposition to in turn constrain the further decomposition of LGPS. Consequently, the S-MCI inherits the high dynamical stability of LPSCl-derived SEI and the lithiophilic affinity of Li-Ge alloy in LGPS-derived MCI. The Li||Li symmetric cells with the protection of S-MCI can operate stably for 1500 h at 0.5 mA cm-2 and 0.5 mAh cm-2. The Li||NCM622 full cells present stable cycling for 100 cycles at 0.1 C with a high-capacity retention of 93.7%. This work sheds fresh insight into constructing electrochemically stable interphase for high-performance ASSLMBs. A dynamically stable mixed conducting interphase (S-MCI) is proposed by a stress self-limiting mechanism to achieve the compatibility of Li metal with composite sulfide electrolytes. The S-MCI can efficiently reduce Li nucleation overpotential, uniformize Li-ion flux and promote Li kinetics, leading to the suppression of Li dendrite penetration in all-solid-state lithium metal batteries.image
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes
    Zhang, Xue
    Wang, Shuo
    Xue, Chuanjiao
    Xin, Chengzhou
    Lin, Yuanhua
    Shen, Yang
    Li, Liangliang
    Nan, Ce-Wen
    ADVANCED MATERIALS, 2019, 31 (11)
  • [32] Interfacial Reactions in Inorganic All-Solid-State Lithium Batteries
    Zheng, Chao
    Li, Lujie
    Wang, Kai
    Wang, Cheng
    Zhang, Jun
    Xia, Yang
    Huang, Hui
    Liang, Chu
    Gan, Yongping
    He, Xinping
    Tao, Xinyong
    Zhang, Wenkui
    BATTERIES & SUPERCAPS, 2021, 4 (01) : 8 - 38
  • [33] A review of all-solid-state lithium-selenium batteries
    Guo, Baiyu
    Zhang, Liqiang
    Tang, Yongfu
    Huang, Jianyu
    BATTERY ENERGY, 2024, 3 (01):
  • [34] Superionic conducting vacancy-rich β-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries
    Li, Weihan
    Li, Minsi
    Wang, Shuo
    Chien, Po-Hsiu
    Luo, Jing
    Fu, Jiamin
    Lin, Xiaoting
    King, Graham
    Feng, Renfei
    Wang, Jian
    Zhou, Jigang
    Li, Ruying
    Liu, Jue
    Mo, Yifei
    Sham, Tsun-Kong
    Sun, Xueliang
    NATURE NANOTECHNOLOGY, 2025, 20 (02) : 265 - 275
  • [35] Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries
    Ji, Xiaoyu
    Zhang, Yiruo
    Cao, Mengxue
    Gu, Quanchao
    Wang, Honglei
    Yu, Jinshan
    Guo, Zi-Hao
    Zhou, Xingui
    JOURNAL OF ADVANCED CERAMICS, 2022, 11 (06) : 835 - 861
  • [36] Metastable Chloride Solid Electrolyte with High Formability for Rechargeable All-Solid-State Lithium Metal Batteries
    Tanibata, Naoto
    Takimoto, Shuta
    Nakano, Koki
    Takeda, Hayami
    Nakayama, Masanobu
    Sumi, Hirofumi
    ACS MATERIALS LETTERS, 2020, 2 (08): : 880 - 886
  • [37] Boosting the cycling stability of all-solid-state lithium metal batteries through MOF-based polymeric protective layers
    Bao, Hongfei
    Chen, Diancheng
    Cao, Jiaqi
    Jiang, Pengfeng
    Li, Kaili
    Liu, Runtao
    Zhao, Yuling
    Zheng, Yichun
    Liao, Beiqi
    Zhang, Yaming
    Lu, Xia
    Sun, Yang
    JOURNAL OF ENERGY CHEMISTRY, 2024, 95 : 511 - 518
  • [38] Thermal behavior of Li electrode in all-solid-state batteries and improved performance by temperature modulation
    Luo, Shuting
    Zhang, Yufeng
    Liu, Xinyu
    Wang, Zhenyu
    Fan, Aoran
    Wang, Haidong
    Ma, Weigang
    Zhu, Lingyun
    Zhang, Xing
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 199
  • [39] An in-situ polymerized interphase engineering for high-voltage all-solid-state lithium-metal batteries
    Nie, Lu
    Chen, Shaojie
    Zhang, Mengtian
    Gao, Tianyi
    Zhang, Yuyao
    Wei, Ran
    Zhang, Yining
    Liu, Wei
    NANO RESEARCH, 2024, 17 (04) : 2687 - 2692
  • [40] Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites
    Ke, Xinyou
    Wang, Yan
    Dai, Liming
    Yuan, Chris
    ENERGY STORAGE MATERIALS, 2020, 33 : 309 - 328