A Dynamically Stable Mixed Conducting Interphase for All-Solid-State Lithium Metal Batteries

被引:124
作者
Li, Shuai [1 ]
Yang, Shi-Jie [1 ]
Liu, Gui-Xian [3 ]
Hu, Jiang-Kui [1 ]
Liao, Yu-Long [1 ]
Wang, Xi-Long [1 ]
Wen, Rui [3 ]
Yuan, Hong [1 ]
Huang, Jia-Qi [1 ,4 ,5 ]
Zhang, Qiang [2 ]
机构
[1] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Tsinghua Ctr Green Chem Engn Electrificat, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[4] Sungkyunkwan Univ, Ctr Next Generat Energy Mat, Suwon 16419, Gyeonggi Do, South Korea
[5] Sungkyunkwan Univ, Sch Chem Engn, Suwon 16419, Gyeonggi Do, South Korea
基金
中国国家自然科学基金;
关键词
all-solid-state Li metal batteries; Li dendrite formation; Li metal anode; mixed conducting interphase; sulfide electrolytes; LI-METAL; INTERFACE; GROWTH; ELECTROLYTE; MECHANISMS; STABILITY; CHEMISTRY; DENDRITE; ANODES;
D O I
10.1002/adma.202307768
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium (Li) metal batteries (ASSLMBs) employing sulfide solid electrolytes have attracted increasing attention owing to superior safety and high energy density. However, the instability of sulfide electrolytes against Li metal induces the formation of two types of incompetent interphases, solid electrolyte interphase (SEI) and mixed conducting interphase (MCI), which significantly blocks rapid Li-ion transport and induces uneven Li deposition and continuous interface degradation. In this contribution, a dynamically stable mixed conducting interphase (S-MCI) is proposed by in situ stress self-limiting reaction to achieve the compatibility of Li metal with composite sulfide electrolytes (Li6PS5Cl (LPSCl) and Li10GeP2S12 (LGPS)). The rational design of composite electrolytes utilizes the expansion stress induced by the electrolyte decomposition to in turn constrain the further decomposition of LGPS. Consequently, the S-MCI inherits the high dynamical stability of LPSCl-derived SEI and the lithiophilic affinity of Li-Ge alloy in LGPS-derived MCI. The Li||Li symmetric cells with the protection of S-MCI can operate stably for 1500 h at 0.5 mA cm-2 and 0.5 mAh cm-2. The Li||NCM622 full cells present stable cycling for 100 cycles at 0.1 C with a high-capacity retention of 93.7%. This work sheds fresh insight into constructing electrochemically stable interphase for high-performance ASSLMBs. A dynamically stable mixed conducting interphase (S-MCI) is proposed by a stress self-limiting mechanism to achieve the compatibility of Li metal with composite sulfide electrolytes. The S-MCI can efficiently reduce Li nucleation overpotential, uniformize Li-ion flux and promote Li kinetics, leading to the suppression of Li dendrite penetration in all-solid-state lithium metal batteries.image
引用
收藏
页数:10
相关论文
共 86 条
[11]   Strain-Stabilized Ceramic-Sulfide Electrolytes [J].
Fitzhugh, William ;
Wu, Fan ;
Ye, Luhan ;
Su, Haoqing ;
Li, Xin .
SMALL, 2019, 15 (33)
[12]   Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes [J].
Han, Fudong ;
Zhu, Yizhou ;
He, Xingfeng ;
Mo, Yifei ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[13]   Challenges in Lithium Metal Anodes for Solid-State Batteries [J].
Hatzell, Kelsey B. ;
Chen, Xi Chelsea ;
Cobb, Corie L. ;
Dasgupta, Neil P. ;
Dixit, Marm B. ;
Marbella, Lauren E. ;
McDowell, Matthew T. ;
Mukherjee, Partha P. ;
Verma, Ankit ;
Viswanathan, Venkatasubramanian ;
Westover, Andrew S. ;
Zeier, Wolfgang G. .
ACS ENERGY LETTERS, 2020, 5 (03) :922-934
[14]   Elemental Foil Anodes for Lithium-Ion Batteries [J].
Heligman, Brian T. ;
Manthiram, Arumugam .
ACS ENERGY LETTERS, 2021, 6 (08) :2666-2672
[15]   Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries [J].
Hu, Jiang-Kui ;
Yuan, Hong ;
Yang, Shi-Jie ;
Lu, Yang ;
Sun, Shuo ;
Liu, Jia ;
Liao, Yu-Long ;
Li, Shuai ;
Zhao, Chen-Zi ;
Huang, Jia-Qi .
JOURNAL OF ENERGY CHEMISTRY, 2022, 71 :612-618
[16]   Perspective on powder technology for all-solid-state batteries: How to pair sulfide electrolyte with high-voltage cathode [J].
Hu, Jiangkui ;
Yang, Shijie ;
Pei, Yingying ;
Wang, Xilong ;
Liao, Yulong ;
Li, Shuai ;
Yue, Aolong ;
Huang, Jia-Qi ;
Yuan, Hong .
PARTICUOLOGY, 2024, 86 :55-66
[17]   Liquid electrolyte development for low-temperature lithium-ion batteries [J].
Hubble, Dion ;
Brown, David Emory ;
Zhao, Yangzhi ;
Fang, Chen ;
Lau, Jonathan ;
McCloskey, Bryan D. ;
Liu, Gao .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) :550-578
[18]   Solid-State Electrolyte Design for Lithium Dendrite Suppression [J].
Ji, Xiao ;
Hou, Singyuk ;
Wang, Pengfei ;
He, Xinzi ;
Piao, Nan ;
Chen, Ji ;
Fan, Xiulin ;
Wang, Chunsheng .
ADVANCED MATERIALS, 2020, 32 (46)
[19]   In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery [J].
Jiang, Jinlong ;
Ou, Yanghao ;
Lu, Shangying ;
Shen, Chao ;
Li, Bobo ;
Liu, Xiaoyu ;
Jiang, Yong ;
Zhao, Bing ;
Zhang, Jiujun .
ENERGY STORAGE MATERIALS, 2022, 50 :810-818
[20]   A Versatile Li6.5In0.25P0.75S5I Sulfide Electrolyte Triggered by Ultimate-Energy Mechanical Alloying for All-Solid-State Lithium Metal Batteries [J].
Jiang, Zhao ;
Peng, Hongling ;
Liu, Yu ;
Li, Zhongxu ;
Zhong, Yu ;
Wang, Xiuli ;
Xia, Xinhui ;
Gu, Changdong ;
Tu, Jiangping .
ADVANCED ENERGY MATERIALS, 2021, 11 (36)