Boundary value problem for a degenerate equation with a Riemann-Liouville operator

被引:1
作者
Irgashev, Bakhrom Yu. [1 ,2 ]
机构
[1] Namangan Engn Construct Inst, Namangan, Uzbekistan
[2] Acad Sci Uzbek, Inst Math, Tashkent, Uzbekistan
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2023年 / 14卷 / 05期
关键词
high order equation; initial-boundary value problem; fractional derivative in the sense of Riemann- Liouville; eigenvalue; eigenfunction; Kilbas-Saigo function; series; convergence; existence; uniqueness; DIFFERENTIAL-EQUATIONS;
D O I
10.17586/2220-8054-2023-14-5-511-517
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the article, the uniqueness and solvability of one boundary value problem for a high-order equation with two lines of degeneracy with a fractional Riemann-Liouville derivative in a rectangular domain is studied by the Fourier method. Sufficient conditions for the well-posedness of the problem posed are obtained.
引用
收藏
页码:511 / 517
页数:7
相关论文
共 23 条
[1]  
[Anonymous], 2023, Vestnik KRAUNC. Fiz.-Mat. Nauki, V42, P123, DOI DOI 10.26117/2079-6641-2023-42-1-123-139
[2]   Fractional Integral Inequalities and Their Applications to Degenerate Differential Equations with the Caputo Fractional Derivative [J].
Artyushin, A. N. .
SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (02) :208-221
[3]  
Baleanu D., 2010, New Trends in Nanotechnology and Fractional Calculus Applications
[4]   Analog of the Darboux problem for a loaded integro-differential equation involving the Caputo fractional derivative [J].
Baltaeva, U. ;
Alikulov, Y. ;
Baltaeva, I. I. ;
Ashirova, A. .
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2021, 12 (04) :418-424
[5]  
Bogolyubov A. N., 2013, Mathematical Modeling, V25, P50
[6]   Some Properties of the Kilbas-Saigo Function [J].
Boudabsa, Lotfi ;
Simon, Thomas .
MATHEMATICS, 2021, 9 (03) :1-24
[7]  
Hilfer R., 2000, APPL FRACTIONAL CALC
[8]   A Boundary Value Problem with Conjugation Conditions for a Degenerate Equation with the Caputo Fractional Derivative [J].
Irgashev, B. Yu. .
RUSSIAN MATHEMATICS, 2022, 66 (04) :24-31
[9]   Initial-boundary problem for degenerate high order equation with fractional derivative [J].
Irgashev, B. Yu. .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01) :170-180
[10]   Solvability of the boundary-value problem for a mixed equation involving hyper-Bessel fractional differential operator and bi-ordinal Hilfer fractional derivative [J].
Karimov, Erkinjon ;
Ruzhansky, Michael ;
Toshtemirov, Bakhodrijon .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) :54-70