On the dynamic Rayleigh-Taylor instability in the Euler-Korteweg model

被引:0
作者
Zhang, Xuyan [1 ,2 ,3 ]
Hua, Zhiwei [1 ]
Jiang, Han [1 ]
Lin, Xueyun [1 ]
机构
[1] Fuzhou Univ, Sch Math & Stat, Fuzhou 350108, Peoples R China
[2] Ctr Appl Math Fujian Prov, Fuzhou 350108, Peoples R China
[3] Key Lab Operat Res & Cybernet Fujian Univ, Fuzhou 350108, Peoples R China
关键词
Incompressible capillary fluids; Rayleigh-Taylor instability; Incompressible; Navier-Stokes-Korteweg equations; NONLINEAR INSTABILITY; STABILITY; SYSTEM; POSEDNESS; FLUIDS; WAVES;
D O I
10.1016/j.jmaa.2022.126890
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the Rayleigh-Taylor instability in the system of equations of the two-dimensional nonhomogeneous incompressible Euler-Korteweg equations in a horizontal periodic domain with infinite height. First, we use variational method to construct (linear) unstable solutions for the linearized capillary Rayleigh- Taylor problem. Then, motivated by the Grenier's idea in [21], we further construct approximate solutions with higher-order growing modes to the capillary Rayleigh- Taylor problem due to the absence of viscosity in the system, and derive the error estimates between both the approximate solutions and nonlinear solutions of the capillary Rayleigh-Taylor problem. Finally, we prove the existence of escape points based on the bootstrap instability method of Hwang-Guo in [28], and thus obtain the nonlinear Rayleigh-Taylor instability result, which presents that the Rayleigh- Taylor instability can occur in the capillary fluids for any capillary coefficient kappa > 0 if the critical capillary number is infinite. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 56 条
[11]   On effects of elasticity and magnetic fields in the linear Rayleigh-Taylor instability of stratified fluids [J].
Chen, Yuping ;
Wang, Weiwei ;
Zhao, Youyi .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[12]   Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids [J].
Choe, HJ ;
Kim, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1183-1201
[13]  
Cordier S., 2000, Methods Appl. Anal., V7, P391
[14]   Conservation of energy for the Euler-Korteweg equations [J].
Debiec, Tomasz ;
Gwiazda, Piotr ;
Swierczewska-Gwiazda, Agnieszka ;
Tzavaras, Athanasios .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (06)
[15]   RAYLEIGH TAYLOR INSTABILITY FOR COMPRESSIBLE ROTATING FLOWS [J].
Duan, Ran ;
Jiang, Fei ;
Yin, Junping .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (06) :1359-1385
[16]   ON THE RAYLEIGH-TAYLOR INSTABILITY FOR INCOMPRESSIBLE, INVISCID MAGNETOHYDRODYNAMIC FLOWS [J].
Duan, Ran ;
Jiang, Fei ;
Jiang, Song .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (06) :1990-2013
[17]  
Freistühler H, 2018, METHODS APPL ANAL, V25, P1
[18]   Nonlinear instability in an ideal fluid [J].
Friedlander, S ;
Strauss, W ;
Vishik, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :187-209
[19]   Nonlinear Instability for the Critically Dissipative Quasi-Geostrophic Equation [J].
Friedlander, Susan ;
Pavlovic, Natasa ;
Vicol, Vlad .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (03) :797-810
[20]   Stability properties of the Euler-Korteweg system with nonmonotone pressures [J].
Giesselmann, Jan ;
Tzavaras, Athanasios E. .
APPLICABLE ANALYSIS, 2017, 96 (09) :1528-1546