On the dynamic Rayleigh-Taylor instability in the Euler-Korteweg model

被引:0
作者
Zhang, Xuyan [1 ,2 ,3 ]
Hua, Zhiwei [1 ]
Jiang, Han [1 ]
Lin, Xueyun [1 ]
机构
[1] Fuzhou Univ, Sch Math & Stat, Fuzhou 350108, Peoples R China
[2] Ctr Appl Math Fujian Prov, Fuzhou 350108, Peoples R China
[3] Key Lab Operat Res & Cybernet Fujian Univ, Fuzhou 350108, Peoples R China
关键词
Incompressible capillary fluids; Rayleigh-Taylor instability; Incompressible; Navier-Stokes-Korteweg equations; NONLINEAR INSTABILITY; STABILITY; SYSTEM; POSEDNESS; FLUIDS; WAVES;
D O I
10.1016/j.jmaa.2022.126890
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the Rayleigh-Taylor instability in the system of equations of the two-dimensional nonhomogeneous incompressible Euler-Korteweg equations in a horizontal periodic domain with infinite height. First, we use variational method to construct (linear) unstable solutions for the linearized capillary Rayleigh- Taylor problem. Then, motivated by the Grenier's idea in [21], we further construct approximate solutions with higher-order growing modes to the capillary Rayleigh- Taylor problem due to the absence of viscosity in the system, and derive the error estimates between both the approximate solutions and nonlinear solutions of the capillary Rayleigh-Taylor problem. Finally, we prove the existence of escape points based on the bootstrap instability method of Hwang-Guo in [28], and thus obtain the nonlinear Rayleigh-Taylor instability result, which presents that the Rayleigh- Taylor instability can occur in the capillary fluids for any capillary coefficient kappa > 0 if the critical capillary number is infinite. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 56 条
[1]   From the Gross-Pitaevskii equation to the Euler Korteweg system, existence of global strong solutions with small irrotational initial data [J].
Audiard, Corentin ;
Haspot, Boris .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (03) :721-760
[2]   Small energy traveling waves for the Euler-Korteweg system [J].
Audiard, Corentin .
NONLINEARITY, 2017, 30 (09) :3362-3399
[3]   GlobalWell-Posedness of the Euler-Korteweg System for Small Irrotational Data [J].
Audiard, Corentin ;
Haspot, Boris .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 351 (01) :201-247
[4]   DISPERSIVE SMOOTHING FOR THE EULER-KORTEWEG MODEL [J].
Audiard, Corentin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) :3018-3040
[5]   Kreiss symmetrizer and boundary conditions for the Euler-Korteweg system in a half space [J].
Audiard, Corentin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (03) :599-620
[6]   On the well-posedness for the Euler-Korteweg model in several space dimensions [J].
Benzoni-Gavage, S. ;
Danchin, R. ;
Descombes, S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1499-1579
[7]   Long wave asymptotics for the Euler-Korteweg system [J].
Benzoni-Gavage, Sylvie ;
Chiron, David .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) :245-304
[8]  
Berti M, 2021, J DYN DIFFER EQU, V33, P1475, DOI 10.1007/s10884-020-09927-3
[9]   On Navier-Stokes-Korteweg and Euler-Korteweg Systems: Application to Quantum Fluids Models [J].
Bresch, Didier ;
Gisclon, Marguerite ;
Lacroix-Violet, Ingrid .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 233 (03) :975-1025
[10]  
Chandrasekhar S., 1961, HYDRODYNAMIC HYDROMA