Dynamic Heterogeneity of Solvent Motion and Ion Transport in Concentrated Electrolytes

被引:10
作者
Fang, Chao [1 ,2 ]
Halat, David M. [1 ,2 ]
Balsara, Nitash P. [1 ,2 ]
Wang, Rui [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div & Joint Ctr Energy Storage Res JCESR, Berkeley, CA 94720 USA
关键词
MOLECULAR-DYNAMICS; MULTICOMPONENT DIFFUSION; IRREVERSIBLE-PROCESSES; POLYMER ELECTROLYTES; TRANSFERENCE NUMBERS; RECIPROCAL RELATIONS; SIMULATIONS; LI+;
D O I
10.1021/acs.jpcb.2c08029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular-level understanding of the cation transference number t(+)(0), an important property that characterizes the transport of working cations, is critical to the bottom-up design of battery electrolytes. We quantify t(+)(0) in a model tetraglyme-based electrolyte using molecular dynamics simulation and the Onsager approach. t(+)(0) exhibits a concentration dependence in three distinct regimes: dilute, intermediate, and concentrated. The cluster approximation uncovers dominant correlations and dynamic heterogeneity in each regime. In the dilute regime, t(+)(0) decreases sharply as increasing numbers of solvent molecules become coordinated with Li+. The crossover to the intermediate regime, t(+)(0) approximate to 0, occurs when all solvent molecules become coordinated, and a plateau is obtained because anions enter the Li+ solvation shell, resulting in ion pairs that do not contribute to t(+)(0). Transference in concentrated electrolytes is dominated by the presence of cations in a variety of negatively charged and solvent-excluded clusters, resulting in t(+)(0) < 0.
引用
收藏
页码:1803 / 1810
页数:8
相关论文
共 54 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Relaxation in glassforming liquids and amorphous solids [J].
Angell, CA ;
Ngai, KL ;
McKenna, GB ;
McMillan, PF ;
Martin, SW .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (06) :3113-3157
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Li+ transport mechanism in oligo(ethylene oxide)s compared to carbonates [J].
Borodin, Oleg ;
Smith, G. D. .
JOURNAL OF SOLUTION CHEMISTRY, 2007, 36 (06) :803-813
[5]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[6]   Diffusion and migration in polymer electrolytes [J].
Choo, Youngwoo ;
Halat, David M. ;
Villaluenga, Irune ;
Timachova, Ksenia ;
Balsara, Nitash P. .
PROGRESS IN POLYMER SCIENCE, 2020, 103
[7]   Correlation Length in Concentrated Electrolytes: Insights from All-Atom Molecular Dynamics Simulations [J].
Coles, Samuel W. ;
Park, Chanbum ;
Nikam, Rohit ;
Kanduc, Matej ;
Dzubiella, Joachim ;
Rotenberg, Benjamin .
JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (09) :1778-1786
[8]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[9]   Role of Molecular Architecture on Ion Transport in Ethylene oxide-Based Polymer Electrolytes [J].
Deng, Chuting ;
Webb, Michael A. ;
Bennington, Peter ;
Sharon, Daniel ;
Nealey, Paul F. ;
Patel, Shrayesh N. ;
de Pablo, Juan J. .
MACROMOLECULES, 2021, 54 (05) :2266-2276
[10]   Spatially heterogeneous dynamics in supercooled liquids [J].
Ediger, MD .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :99-128