The non-abelian Hodge correspondence on some non-Kahler manifolds

被引:1
|
作者
Pan, Changpeng [1 ]
Zhang, Chuanjing [2 ]
Zhang, Xi [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
projectively flat bundle; Higgs bundle; non-Kahler; the Hermitian-Yang-Mills flow; epsilon-regularity theorem; YANG-MILLS CONNECTIONS; FLAT VECTOR-BUNDLES; HIGGS BUNDLES; HARMONIC MAPS; REPRESENTATIONS; FLOW; EXISTENCE; METRICS; SURFACE;
D O I
10.1007/s11425-022-2053-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-abelian Hodge correspondence was established by Corlette (1988), Donaldson (1987), Hitchin (1987) and Simpson (1988, 1992). It states that on a compact Kahler manifold (X, omega), there is a one-to-one correspondence between the moduli space of semi-simple flat complex vector bundles and the moduli space of poly-stable Higgs bundles with vanishing Chern numbers. In this paper, we extend this correspondence to the projectively flat bundles over some non-Kahler manifold cases. Firstly, we prove an existence theorem of Poisson metrics on simple projectively flat bundles over compact Hermitian manifolds. As its application, we obtain a vanishing theorem of characteristic classes of projectively flat bundles. Secondly, on compact Hermitian manifolds which satisfy Gauduchon and astheno-Kaller conditions, we combine the continuity method and the heat flow method to prove that every semi-stable Higgs bundle with Delta(E, (partial derivative) over bar (E)) . [omega(n-2)] = 0 must be an extension of stable Higgs bundles. Using the above results, over some compact non-Kahler manifolds (M, omega), we establish an equivalence of categories between the category of semi-stable (poly-stable) Higgs bundles (E, (partial derivative) over bar (E), phi) with Delta(E, (partial derivative) over bar (E)) . [omega(n-2)] = 0 and the category of (semi-simple) projectively flat bundles (E, D) with root-1F(D) = alpha circle times Id(E) for some real (1,1)-form alpha.
引用
收藏
页码:2545 / 2588
页数:44
相关论文
共 50 条
  • [21] EXAMPLES OF NON-KAHLER SYMPLECTIC-MANIFOLDS
    YAMATO, K
    OSAKA JOURNAL OF MATHEMATICS, 1990, 27 (02) : 431 - 439
  • [22] ON A CLASS OF NON-KAHLER COMPLEX-MANIFOLDS
    VAISMAN, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (11): : 365 - 368
  • [23] Non-Kahler Calabi-Yau Manifolds
    Tseng, Li-Sheng
    Yau, Shing-Tung
    STRING-MATH 2011, 2012, 85 : 241 - +
  • [24] EXAMPLES OF COMPACT NON-KAHLER ALMOST KAHLER-MANIFOLDS
    CORDERO, LA
    FERNANDEZ, M
    DELEON, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (02) : 280 - 286
  • [25] General solution of the non-Abelian Gauss law and non-Abelian analogues of the Hodge decomposition
    Majumdar, P
    Sharatchandra, HS
    PHYSICAL REVIEW D, 1998, 58 (06)
  • [26] Geometry and Automorphisms of Non-Kahler Holomorphic Symplectic Manifolds
    Bogomolov, Fedor
    Kurnosov, Nikon
    Kuznetsova, Alexandra
    Yasinsky, Egor
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (16) : 12302 - 12341
  • [27] Morse-type integrals on non-Kahler manifolds
    Kolodziej, Slawomir
    Tosatti, Valentino
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 991 - 1004
  • [28] Eigenvalues of the complex Laplacian on compact non-Kahler manifolds
    Khan, Gabriel J. H.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (02) : 233 - 249
  • [29] Geometric transitions, flops and non-Kahler manifolds: II
    Becker, M
    Dasgupta, K
    Katz, S
    Knauf, A
    Tatar, R
    NUCLEAR PHYSICS B, 2006, 738 (1-2) : 124 - 183
  • [30] Geometric transitions, flops and non-Kahler manifolds: I
    Becker, M
    Dasgupta, K
    Knauf, A
    Tatar, R
    NUCLEAR PHYSICS B, 2004, 702 (1-2) : 207 - 268